Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning

Recent critical commentaries unfavorably compare deep learning (DL) with standard machine learning (SML) for brain imaging data analysis. Here, the authors show that if trained following prevalent DL practices, DL methods substantially improve compared to SML methods by encoding robust discriminativ...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Anees Abrol, Zening Fu, Mustafa Salman, Rogers Silva, Yuhui Du, Sergey Plis, Vince Calhoun
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/74864ec0c1ad472e9740114321893ecf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Recent critical commentaries unfavorably compare deep learning (DL) with standard machine learning (SML) for brain imaging data analysis. Here, the authors show that if trained following prevalent DL practices, DL methods substantially improve compared to SML methods by encoding robust discriminative brain representations.