Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning
Recent critical commentaries unfavorably compare deep learning (DL) with standard machine learning (SML) for brain imaging data analysis. Here, the authors show that if trained following prevalent DL practices, DL methods substantially improve compared to SML methods by encoding robust discriminativ...
Guardado en:
Autores principales: | Anees Abrol, Zening Fu, Mustafa Salman, Rogers Silva, Yuhui Du, Sergey Plis, Vince Calhoun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/74864ec0c1ad472e9740114321893ecf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Manifold Learning Perspective on Representation Learning: Learning Decoder and Representations without an Encoder
por: Viktoria Schuster, et al.
Publicado: (2021) -
Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder
por: Yuhui Du, et al.
Publicado: (2021) -
Editorial: Machine Learning in Neuroimaging
por: Christian Federau, et al.
Publicado: (2021) -
Learning auditory discriminations from observation is efficient but less robust than learning from experience
por: Gagan Narula, et al.
Publicado: (2018) -
Machine learning outperforms thermodynamics in measuring how well a many-body system learns a drive
por: Weishun Zhong, et al.
Publicado: (2021)