An Alternative to Laboratory Testing: Random Forest-Based Water Quality Prediction Framework for Inland and Nearshore Water Bodies
Water quality monitoring plays a vital role in the water environment management, while efficient monitoring provides direction and verification of the effectiveness of water management. Traditional water quality monitoring for a variety of water parameters requires the placement of multiple sensors,...
Guardado en:
Autores principales: | Jianlong Xu, Zhuo Xu, Jianjun Kuang, Che Lin, Lianghong Xiao, Xingshan Huang, Yufeng Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/748aeb620b3b483e931c6a4bdeeb7d7b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Flood Risk Mapping by Remote Sensing Data and Random Forest Technique
por: Hadi Farhadi, et al.
Publicado: (2021) -
An Assessment of Water Color for Inland Water in China Using a Landsat 8-Derived Forel–Ule Index and the Google Earth Engine Platform
por: Xidong Chen, et al.
Publicado: (2021) -
The Masterful Water Engineers of Machu Picchu
por: Kenneth R. Wright
Publicado: (2021) -
Water-Saving Efficiency and Inequality of Virtual Water Trade in China
por: Yueyan Xu, et al.
Publicado: (2021) -
Changes in Selected Water Quality Parameters in the Utrata River as a Function of Catchment Area Land Use
por: Katarzyna Dębska, et al.
Publicado: (2021)