Highly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75)
This study showed that thermal nanocrystallization of glassy analogs of LiFe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo>...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/74a7cb78d570406fb838bb2c4395a0ec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:74a7cb78d570406fb838bb2c4395a0ec |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:74a7cb78d570406fb838bb2c4395a0ec2021-11-11T18:00:50ZHighly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75)10.3390/ma142164341996-1944https://doaj.org/article/74a7cb78d570406fb838bb2c4395a0ec2021-10-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/21/6434https://doaj.org/toc/1996-1944This study showed that thermal nanocrystallization of glassy analogs of LiFe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></semantics></math></inline-formula>Mn<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>x</mi></msub></semantics></math></inline-formula>PO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> (with the addition of vanadium for improvement of glass forming properties) resulted in highly conducting materials that may be used as cathodes for Li-ion batteries. The glasses and nanomaterials were studied with differential thermal analysis, X-ray diffractometry, and impedance spectroscopy. The electrical conductivity of the nanocrystalline samples varied, depending on the composition. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>=</mo><mn>0.5</mn></mrow></semantics></math></inline-formula>, it exceeded <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula> S/cm at room temperature with an activation energy as low as 0.15 eV. The giant and irreversible increase in the conductivity was explained on the basis of Mott’s theory of electron hopping and a core-shell concept. Electrochemical performance of the active material with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>=</mo><mn>0.5</mn></mrow></semantics></math></inline-formula> was also reported.Justyna E. FrąckiewiczTomasz K. PietrzakMDPI AGarticlenanocrystallizationhigh conductivityelectron hoppingolivinecathode materialsTechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6434, p 6434 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
nanocrystallization high conductivity electron hopping olivine cathode materials Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 |
spellingShingle |
nanocrystallization high conductivity electron hopping olivine cathode materials Technology T Electrical engineering. Electronics. Nuclear engineering TK1-9971 Engineering (General). Civil engineering (General) TA1-2040 Microscopy QH201-278.5 Descriptive and experimental mechanics QC120-168.85 Justyna E. Frąckiewicz Tomasz K. Pietrzak Highly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75) |
description |
This study showed that thermal nanocrystallization of glassy analogs of LiFe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></semantics></math></inline-formula>Mn<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>x</mi></msub></semantics></math></inline-formula>PO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> (with the addition of vanadium for improvement of glass forming properties) resulted in highly conducting materials that may be used as cathodes for Li-ion batteries. The glasses and nanomaterials were studied with differential thermal analysis, X-ray diffractometry, and impedance spectroscopy. The electrical conductivity of the nanocrystalline samples varied, depending on the composition. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>=</mo><mn>0.5</mn></mrow></semantics></math></inline-formula>, it exceeded <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula> S/cm at room temperature with an activation energy as low as 0.15 eV. The giant and irreversible increase in the conductivity was explained on the basis of Mott’s theory of electron hopping and a core-shell concept. Electrochemical performance of the active material with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>=</mo><mn>0.5</mn></mrow></semantics></math></inline-formula> was also reported. |
format |
article |
author |
Justyna E. Frąckiewicz Tomasz K. Pietrzak |
author_facet |
Justyna E. Frąckiewicz Tomasz K. Pietrzak |
author_sort |
Justyna E. Frąckiewicz |
title |
Highly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75) |
title_short |
Highly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75) |
title_full |
Highly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75) |
title_fullStr |
Highly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75) |
title_full_unstemmed |
Highly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75) |
title_sort |
highly conducting li(fe<sub>1−<i>x</i></sub>mn<sub><i>x</i></sub>)<sub>0.88</sub>v<sub>0.08</sub>po<sub>4</sub> cathode materials nanocrystallized from the glassy state (<i>x</i> = 0.25, 0.5, 0.75) |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/74a7cb78d570406fb838bb2c4395a0ec |
work_keys_str_mv |
AT justynaefrackiewicz highlyconductinglifesub1ixisubmnsubixisubsub088subvsub008subposub4subcathodematerialsnanocrystallizedfromtheglassystateixi02505075 AT tomaszkpietrzak highlyconductinglifesub1ixisubmnsubixisubsub088subvsub008subposub4subcathodematerialsnanocrystallizedfromtheglassystateixi02505075 |
_version_ |
1718431950227636224 |