Highly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75)

This study showed that thermal nanocrystallization of glassy analogs of LiFe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo>...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Justyna E. Frąckiewicz, Tomasz K. Pietrzak
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/74a7cb78d570406fb838bb2c4395a0ec
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:74a7cb78d570406fb838bb2c4395a0ec
record_format dspace
spelling oai:doaj.org-article:74a7cb78d570406fb838bb2c4395a0ec2021-11-11T18:00:50ZHighly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75)10.3390/ma142164341996-1944https://doaj.org/article/74a7cb78d570406fb838bb2c4395a0ec2021-10-01T00:00:00Zhttps://www.mdpi.com/1996-1944/14/21/6434https://doaj.org/toc/1996-1944This study showed that thermal nanocrystallization of glassy analogs of LiFe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></semantics></math></inline-formula>Mn<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>x</mi></msub></semantics></math></inline-formula>PO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> (with the addition of vanadium for improvement of glass forming properties) resulted in highly conducting materials that may be used as cathodes for Li-ion batteries. The glasses and nanomaterials were studied with differential thermal analysis, X-ray diffractometry, and impedance spectroscopy. The electrical conductivity of the nanocrystalline samples varied, depending on the composition. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>=</mo><mn>0.5</mn></mrow></semantics></math></inline-formula>, it exceeded <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula> S/cm at room temperature with an activation energy as low as 0.15 eV. The giant and irreversible increase in the conductivity was explained on the basis of Mott’s theory of electron hopping and a core-shell concept. Electrochemical performance of the active material with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>=</mo><mn>0.5</mn></mrow></semantics></math></inline-formula> was also reported.Justyna E. FrąckiewiczTomasz K. PietrzakMDPI AGarticlenanocrystallizationhigh conductivityelectron hoppingolivinecathode materialsTechnologyTElectrical engineering. Electronics. Nuclear engineeringTK1-9971Engineering (General). Civil engineering (General)TA1-2040MicroscopyQH201-278.5Descriptive and experimental mechanicsQC120-168.85ENMaterials, Vol 14, Iss 6434, p 6434 (2021)
institution DOAJ
collection DOAJ
language EN
topic nanocrystallization
high conductivity
electron hopping
olivine
cathode materials
Technology
T
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
spellingShingle nanocrystallization
high conductivity
electron hopping
olivine
cathode materials
Technology
T
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Justyna E. Frąckiewicz
Tomasz K. Pietrzak
Highly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75)
description This study showed that thermal nanocrystallization of glassy analogs of LiFe<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub></semantics></math></inline-formula>Mn<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mi>x</mi></msub></semantics></math></inline-formula>PO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> (with the addition of vanadium for improvement of glass forming properties) resulted in highly conducting materials that may be used as cathodes for Li-ion batteries. The glasses and nanomaterials were studied with differential thermal analysis, X-ray diffractometry, and impedance spectroscopy. The electrical conductivity of the nanocrystalline samples varied, depending on the composition. For <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>=</mo><mn>0.5</mn></mrow></semantics></math></inline-formula>, it exceeded <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></semantics></math></inline-formula> S/cm at room temperature with an activation energy as low as 0.15 eV. The giant and irreversible increase in the conductivity was explained on the basis of Mott’s theory of electron hopping and a core-shell concept. Electrochemical performance of the active material with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>=</mo><mn>0.5</mn></mrow></semantics></math></inline-formula> was also reported.
format article
author Justyna E. Frąckiewicz
Tomasz K. Pietrzak
author_facet Justyna E. Frąckiewicz
Tomasz K. Pietrzak
author_sort Justyna E. Frąckiewicz
title Highly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75)
title_short Highly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75)
title_full Highly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75)
title_fullStr Highly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75)
title_full_unstemmed Highly Conducting Li(Fe<sub>1−<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>0.88</sub>V<sub>0.08</sub>PO<sub>4</sub> Cathode Materials Nanocrystallized from the Glassy State (<i>x</i> = 0.25, 0.5, 0.75)
title_sort highly conducting li(fe<sub>1−<i>x</i></sub>mn<sub><i>x</i></sub>)<sub>0.88</sub>v<sub>0.08</sub>po<sub>4</sub> cathode materials nanocrystallized from the glassy state (<i>x</i> = 0.25, 0.5, 0.75)
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/74a7cb78d570406fb838bb2c4395a0ec
work_keys_str_mv AT justynaefrackiewicz highlyconductinglifesub1ixisubmnsubixisubsub088subvsub008subposub4subcathodematerialsnanocrystallizedfromtheglassystateixi02505075
AT tomaszkpietrzak highlyconductinglifesub1ixisubmnsubixisubsub088subvsub008subposub4subcathodematerialsnanocrystallizedfromtheglassystateixi02505075
_version_ 1718431950227636224