Production and Evaluation of Fractionated Tamarind Seed Oil Methyl Esters as a New Source of Biodiesel
Biodiesel has attracted considerable interest as an alternative biofuel due to its many advantages over conventional petroleum diesel such as inherent lubricity, low toxicity, renewable raw materials, biodegradability, superior flash point, and low carbon footprint. However, high production costs, p...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/74a88ce528c14bcfb29f0633ca94ea17 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:74a88ce528c14bcfb29f0633ca94ea17 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:74a88ce528c14bcfb29f0633ca94ea172021-11-11T15:57:20ZProduction and Evaluation of Fractionated Tamarind Seed Oil Methyl Esters as a New Source of Biodiesel10.3390/en142171481996-1073https://doaj.org/article/74a88ce528c14bcfb29f0633ca94ea172021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1073/14/21/7148https://doaj.org/toc/1996-1073Biodiesel has attracted considerable interest as an alternative biofuel due to its many advantages over conventional petroleum diesel such as inherent lubricity, low toxicity, renewable raw materials, biodegradability, superior flash point, and low carbon footprint. However, high production costs, poor low temperature operability, variability of fuel quality from different feedstocks, and low storage stability negatively impact more widespread adoption. In order to reduce production costs, inexpensive inedible oilseed alternatives are needed for biodiesel production. This study utilized inedible tamarind (<i>Tamarind indica</i>) seed oil as an alternative biodiesel feedstock, which contained linoleic (31.8%), oleic (17.1%), and lauric (12.0%) acids as the primary fatty acids. A simple and cost-effective high vacuum fractional distillation (HVFD) methodology was used to separate the oil into three fractions (F1, F2, and F3). Subsequent transesterification utilizing basic, acidic, and enzymatic catalysis produced biodiesel of consistent quality and overcame the problem of low temperature biodiesel performance. The most desirable biodiesel with regard to low temperature operability was produced from fractions F2 and F3, which were enriched in unsaturated fatty acids relative to tamarind seed oil. Other properties such as density and cetane number were within the limits specified in the American and European biodiesel standards.Ayesha MushtaqMuhammad Asif HanifMuhammad ZahidUmer RashidZahid MushtaqMuhammad ZubairBryan R. MoserFahad A. AlharthiMDPI AGarticleTamarindnon-ediblefractionationtransesterificationbiodieselfatty acid methyl estersTechnologyTENEnergies, Vol 14, Iss 7148, p 7148 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Tamarind non-edible fractionation transesterification biodiesel fatty acid methyl esters Technology T |
spellingShingle |
Tamarind non-edible fractionation transesterification biodiesel fatty acid methyl esters Technology T Ayesha Mushtaq Muhammad Asif Hanif Muhammad Zahid Umer Rashid Zahid Mushtaq Muhammad Zubair Bryan R. Moser Fahad A. Alharthi Production and Evaluation of Fractionated Tamarind Seed Oil Methyl Esters as a New Source of Biodiesel |
description |
Biodiesel has attracted considerable interest as an alternative biofuel due to its many advantages over conventional petroleum diesel such as inherent lubricity, low toxicity, renewable raw materials, biodegradability, superior flash point, and low carbon footprint. However, high production costs, poor low temperature operability, variability of fuel quality from different feedstocks, and low storage stability negatively impact more widespread adoption. In order to reduce production costs, inexpensive inedible oilseed alternatives are needed for biodiesel production. This study utilized inedible tamarind (<i>Tamarind indica</i>) seed oil as an alternative biodiesel feedstock, which contained linoleic (31.8%), oleic (17.1%), and lauric (12.0%) acids as the primary fatty acids. A simple and cost-effective high vacuum fractional distillation (HVFD) methodology was used to separate the oil into three fractions (F1, F2, and F3). Subsequent transesterification utilizing basic, acidic, and enzymatic catalysis produced biodiesel of consistent quality and overcame the problem of low temperature biodiesel performance. The most desirable biodiesel with regard to low temperature operability was produced from fractions F2 and F3, which were enriched in unsaturated fatty acids relative to tamarind seed oil. Other properties such as density and cetane number were within the limits specified in the American and European biodiesel standards. |
format |
article |
author |
Ayesha Mushtaq Muhammad Asif Hanif Muhammad Zahid Umer Rashid Zahid Mushtaq Muhammad Zubair Bryan R. Moser Fahad A. Alharthi |
author_facet |
Ayesha Mushtaq Muhammad Asif Hanif Muhammad Zahid Umer Rashid Zahid Mushtaq Muhammad Zubair Bryan R. Moser Fahad A. Alharthi |
author_sort |
Ayesha Mushtaq |
title |
Production and Evaluation of Fractionated Tamarind Seed Oil Methyl Esters as a New Source of Biodiesel |
title_short |
Production and Evaluation of Fractionated Tamarind Seed Oil Methyl Esters as a New Source of Biodiesel |
title_full |
Production and Evaluation of Fractionated Tamarind Seed Oil Methyl Esters as a New Source of Biodiesel |
title_fullStr |
Production and Evaluation of Fractionated Tamarind Seed Oil Methyl Esters as a New Source of Biodiesel |
title_full_unstemmed |
Production and Evaluation of Fractionated Tamarind Seed Oil Methyl Esters as a New Source of Biodiesel |
title_sort |
production and evaluation of fractionated tamarind seed oil methyl esters as a new source of biodiesel |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/74a88ce528c14bcfb29f0633ca94ea17 |
work_keys_str_mv |
AT ayeshamushtaq productionandevaluationoffractionatedtamarindseedoilmethylestersasanewsourceofbiodiesel AT muhammadasifhanif productionandevaluationoffractionatedtamarindseedoilmethylestersasanewsourceofbiodiesel AT muhammadzahid productionandevaluationoffractionatedtamarindseedoilmethylestersasanewsourceofbiodiesel AT umerrashid productionandevaluationoffractionatedtamarindseedoilmethylestersasanewsourceofbiodiesel AT zahidmushtaq productionandevaluationoffractionatedtamarindseedoilmethylestersasanewsourceofbiodiesel AT muhammadzubair productionandevaluationoffractionatedtamarindseedoilmethylestersasanewsourceofbiodiesel AT bryanrmoser productionandevaluationoffractionatedtamarindseedoilmethylestersasanewsourceofbiodiesel AT fahadaalharthi productionandevaluationoffractionatedtamarindseedoilmethylestersasanewsourceofbiodiesel |
_version_ |
1718432421956812800 |