Raman spectroscopy and artificial intelligence to predict the Bayesian probability of breast cancer
Abstract This study addresses the core issue facing a surgical team during breast cancer surgery: quantitative prediction of tumor likelihood including estimates of prediction error. We have previously reported that a molecular probe, Laser Raman spectroscopy (LRS), can distinguish healthy and tumor...
Enregistré dans:
Auteurs principaux: | Ragini Kothari, Veronica Jones, Dominique Mena, Viviana Bermúdez Reyes, Youkang Shon, Jennifer P. Smith, Daniel Schmolze, Philip D. Cha, Lily Lai, Yuman Fong, Michael C. Storrie-Lombardi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/74b8e0603ab6427490c20c75e6ad68da |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Raman Spectroscopy for Rapid Evaluation of Surgical Margins during Breast Cancer Lumpectomy
par: Willie C. Zúñiga, et autres
Publié: (2019) - Journal of Raman spectroscopy
-
Collective animal behavior from Bayesian estimation and probability matching.
par: Alfonso Pérez-Escudero, et autres
Publié: (2011) -
Raman spectroscopy and regenerative medicine: a review
par: Katherine J. I. Ember, et autres
Publié: (2017) -
Characterizing coral skeleton mineralogy with Raman spectroscopy
par: Thomas M. DeCarlo
Publié: (2018)