Machine Learning Undercounts Reproductive Organs on Herbarium Specimens but Accurately Derives Their Quantitative Phenological Status: A Case Study of <i>Streptanthus tortuosus</i>

Machine learning (ML) can accelerate the extraction of phenological data from herbarium specimens; however, no studies have assessed whether ML-derived phenological data can be used reliably to evaluate ecological patterns. In this study, 709 herbarium specimens representing a widespread annual herb...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Natalie L. R. Love, Pierre Bonnet, Hervé Goëau, Alexis Joly, Susan J. Mazer
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/74bc584fbc4140d7a554f9f0788e9d00
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares