Machine Learning Undercounts Reproductive Organs on Herbarium Specimens but Accurately Derives Their Quantitative Phenological Status: A Case Study of <i>Streptanthus tortuosus</i>
Machine learning (ML) can accelerate the extraction of phenological data from herbarium specimens; however, no studies have assessed whether ML-derived phenological data can be used reliably to evaluate ecological patterns. In this study, 709 herbarium specimens representing a widespread annual herb...
Guardado en:
Autores principales: | Natalie L. R. Love, Pierre Bonnet, Hervé Goëau, Alexis Joly, Susan J. Mazer |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/74bc584fbc4140d7a554f9f0788e9d00 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Contribution of Historical and Morphological Studies on Herbarium Specimens to a Better Definition of <i>Chara pelosiana</i> Avetta (Charales, Charophyceae)
por: Anna Millozza, et al.
Publicado: (2021) -
A Fast Lightweight 3D Separable Convolutional Neural Network With Multi-Input Multi-Output for Moving Object Detection
por: Bingxin Hou, et al.
Publicado: (2021) -
SEFPN: Scale-Equalizing Feature Pyramid Network for Object Detection
por: Zhiqiang Zhang, et al.
Publicado: (2021) -
LPNet: Retina Inspired Neural Network for Object Detection and Recognition
por: Jie Cao, et al.
Publicado: (2021) -
Rotation-Invariant and Relation-Aware Cross-Domain Adaptation Object Detection Network for Optical Remote Sensing Images
por: Ying Chen, et al.
Publicado: (2021)