Imaging of photoacoustic-mediated permeabilization of giant unilamellar vesicles (GUVs)

Abstract Target delivery of large foreign materials to cells requires transient permeabilization of the cell membrane without toxicity. Giant unilamellar vesicles (GUVs) mimic the phospholipid bilayer of the cell membrane and are also useful drug delivery vehicles. Controlled increase of the permeab...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Diogo A. Pereira, Alexandre D. Silva, Patricia A. T. Martins, Ana P. Piedade, Dmitro Martynowych, David Veysset, Maria João Moreno, Carlos Serpa, Keith A. Nelson, Luis G. Arnaut
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/74c5f6fd006045a8b42db599ba9f2875
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:74c5f6fd006045a8b42db599ba9f2875
record_format dspace
spelling oai:doaj.org-article:74c5f6fd006045a8b42db599ba9f28752021-12-02T14:06:49ZImaging of photoacoustic-mediated permeabilization of giant unilamellar vesicles (GUVs)10.1038/s41598-021-82140-42045-2322https://doaj.org/article/74c5f6fd006045a8b42db599ba9f28752021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82140-4https://doaj.org/toc/2045-2322Abstract Target delivery of large foreign materials to cells requires transient permeabilization of the cell membrane without toxicity. Giant unilamellar vesicles (GUVs) mimic the phospholipid bilayer of the cell membrane and are also useful drug delivery vehicles. Controlled increase of the permeability of GUVs is a delicate balance between sufficient perturbation for the delivery of the GUV contents and damage to the vesicles. Here we show that photoacoustic waves can promote the release of FITC-dextran or GFP from GUVs without damage. Real-time interferometric imaging offers the first movies of photoacoustic wave propagation and interaction with GUVs. The photoacoustic waves are seen as mostly compressive half-cycle pulses with peak pressures of ~ 1 MPa and spatial extent FWHM ~ 36 µm. At a repetition rate of 10 Hz, they enable the release of 25% of the FITC-dextran content of GUVs in 15 min. Such photoacoustic waves may enable non-invasive targeted release of GUVs and cell transfection over large volumes of tissues in just a few minutes.Diogo A. PereiraAlexandre D. SilvaPatricia A. T. MartinsAna P. PiedadeDmitro MartynowychDavid VeyssetMaria João MorenoCarlos SerpaKeith A. NelsonLuis G. ArnautNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Diogo A. Pereira
Alexandre D. Silva
Patricia A. T. Martins
Ana P. Piedade
Dmitro Martynowych
David Veysset
Maria João Moreno
Carlos Serpa
Keith A. Nelson
Luis G. Arnaut
Imaging of photoacoustic-mediated permeabilization of giant unilamellar vesicles (GUVs)
description Abstract Target delivery of large foreign materials to cells requires transient permeabilization of the cell membrane without toxicity. Giant unilamellar vesicles (GUVs) mimic the phospholipid bilayer of the cell membrane and are also useful drug delivery vehicles. Controlled increase of the permeability of GUVs is a delicate balance between sufficient perturbation for the delivery of the GUV contents and damage to the vesicles. Here we show that photoacoustic waves can promote the release of FITC-dextran or GFP from GUVs without damage. Real-time interferometric imaging offers the first movies of photoacoustic wave propagation and interaction with GUVs. The photoacoustic waves are seen as mostly compressive half-cycle pulses with peak pressures of ~ 1 MPa and spatial extent FWHM ~ 36 µm. At a repetition rate of 10 Hz, they enable the release of 25% of the FITC-dextran content of GUVs in 15 min. Such photoacoustic waves may enable non-invasive targeted release of GUVs and cell transfection over large volumes of tissues in just a few minutes.
format article
author Diogo A. Pereira
Alexandre D. Silva
Patricia A. T. Martins
Ana P. Piedade
Dmitro Martynowych
David Veysset
Maria João Moreno
Carlos Serpa
Keith A. Nelson
Luis G. Arnaut
author_facet Diogo A. Pereira
Alexandre D. Silva
Patricia A. T. Martins
Ana P. Piedade
Dmitro Martynowych
David Veysset
Maria João Moreno
Carlos Serpa
Keith A. Nelson
Luis G. Arnaut
author_sort Diogo A. Pereira
title Imaging of photoacoustic-mediated permeabilization of giant unilamellar vesicles (GUVs)
title_short Imaging of photoacoustic-mediated permeabilization of giant unilamellar vesicles (GUVs)
title_full Imaging of photoacoustic-mediated permeabilization of giant unilamellar vesicles (GUVs)
title_fullStr Imaging of photoacoustic-mediated permeabilization of giant unilamellar vesicles (GUVs)
title_full_unstemmed Imaging of photoacoustic-mediated permeabilization of giant unilamellar vesicles (GUVs)
title_sort imaging of photoacoustic-mediated permeabilization of giant unilamellar vesicles (guvs)
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/74c5f6fd006045a8b42db599ba9f2875
work_keys_str_mv AT diogoapereira imagingofphotoacousticmediatedpermeabilizationofgiantunilamellarvesiclesguvs
AT alexandredsilva imagingofphotoacousticmediatedpermeabilizationofgiantunilamellarvesiclesguvs
AT patriciaatmartins imagingofphotoacousticmediatedpermeabilizationofgiantunilamellarvesiclesguvs
AT anappiedade imagingofphotoacousticmediatedpermeabilizationofgiantunilamellarvesiclesguvs
AT dmitromartynowych imagingofphotoacousticmediatedpermeabilizationofgiantunilamellarvesiclesguvs
AT davidveysset imagingofphotoacousticmediatedpermeabilizationofgiantunilamellarvesiclesguvs
AT mariajoaomoreno imagingofphotoacousticmediatedpermeabilizationofgiantunilamellarvesiclesguvs
AT carlosserpa imagingofphotoacousticmediatedpermeabilizationofgiantunilamellarvesiclesguvs
AT keithanelson imagingofphotoacousticmediatedpermeabilizationofgiantunilamellarvesiclesguvs
AT luisgarnaut imagingofphotoacousticmediatedpermeabilizationofgiantunilamellarvesiclesguvs
_version_ 1718391969949941760