Mutual stimulatory signaling between human myogenic cells and rat cerebellar neurons
Abstract Insight into the bidirectional signaling between primary human myogenic cells and neurons is lacking. For this purpose, human myogenic cells were derived from the semitendinosus and gracilis muscles of five healthy individuals and co‐cultured with cerebellar granule neurons from two litters...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/74cb20f03038431e9c90762e3b383d57 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:74cb20f03038431e9c90762e3b383d57 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:74cb20f03038431e9c90762e3b383d572021-11-15T09:54:40ZMutual stimulatory signaling between human myogenic cells and rat cerebellar neurons2051-817X10.14814/phy2.15077https://doaj.org/article/74cb20f03038431e9c90762e3b383d572021-11-01T00:00:00Zhttps://doi.org/10.14814/phy2.15077https://doaj.org/toc/2051-817XAbstract Insight into the bidirectional signaling between primary human myogenic cells and neurons is lacking. For this purpose, human myogenic cells were derived from the semitendinosus and gracilis muscles of five healthy individuals and co‐cultured with cerebellar granule neurons from two litters of 7‐day‐old Wistar rat pups, in muscle medium or neural medium, alongside monocultures of myogenic cells or neurons. RT‐PCR was performed to determine human mRNA levels of GAPDH, Ki67, myogenin, and MUSK, and the acetylcholine receptor subtypes CHRNA1, CHRNB1, CHRNG, CHRND, and CHRNE, and rat mRNA levels of GAPDH, Fth1, Rack1, vimentin, Cdh13, and Ppp1r1a. Immunocytochemistry was used to evaluate neurite outgrowth (GAP43) in the presence and absence of myogenic cells. Co‐culture with primary neurons lead to higher myogenic cell gene expression levels of GAPDH, myogenin, MUSK, CHRNA1, CHRNG, and CHRND, compared to myogenic cells cultured alone. It appeared that neurons preferentially attached to myotubes and that neurite outgrowth was enhanced when neurons were cultured with myogenic cells compared to monoculture. In neural medium, rat mRNA levels of GAPDH, vimentin, Cdh13, and Ppp1r1a were greater in co‐culture, versus monoculture, whereas in muscle medium co‐culture lead to lower levels of Fth1, Rack1, vimentin, and Cdh13 than monoculture. These findings demonstrate mutually beneficial stimulatory signaling between rat cerebellar granule neurons and human myogenic cells, providing support for an active role for both the neuron and the muscle cell in stimulating neurite growth and myogenesis. Bidirectional muscle nerve signaling.Michal TamášStanislava PankratovaPeter SchjerlingCasper SoendenbroeChing‐Yan Chloé YeungCristian Pablo PennisiJens R. JakobsenMichael R. KrogsgaardMichael KjaerAbigail L. MackeyWileyarticleacetylcholine receptorinnervationmyogenesisneuronskeletal musclePhysiologyQP1-981ENPhysiological Reports, Vol 9, Iss 21, Pp n/a-n/a (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
acetylcholine receptor innervation myogenesis neuron skeletal muscle Physiology QP1-981 |
spellingShingle |
acetylcholine receptor innervation myogenesis neuron skeletal muscle Physiology QP1-981 Michal Tamáš Stanislava Pankratova Peter Schjerling Casper Soendenbroe Ching‐Yan Chloé Yeung Cristian Pablo Pennisi Jens R. Jakobsen Michael R. Krogsgaard Michael Kjaer Abigail L. Mackey Mutual stimulatory signaling between human myogenic cells and rat cerebellar neurons |
description |
Abstract Insight into the bidirectional signaling between primary human myogenic cells and neurons is lacking. For this purpose, human myogenic cells were derived from the semitendinosus and gracilis muscles of five healthy individuals and co‐cultured with cerebellar granule neurons from two litters of 7‐day‐old Wistar rat pups, in muscle medium or neural medium, alongside monocultures of myogenic cells or neurons. RT‐PCR was performed to determine human mRNA levels of GAPDH, Ki67, myogenin, and MUSK, and the acetylcholine receptor subtypes CHRNA1, CHRNB1, CHRNG, CHRND, and CHRNE, and rat mRNA levels of GAPDH, Fth1, Rack1, vimentin, Cdh13, and Ppp1r1a. Immunocytochemistry was used to evaluate neurite outgrowth (GAP43) in the presence and absence of myogenic cells. Co‐culture with primary neurons lead to higher myogenic cell gene expression levels of GAPDH, myogenin, MUSK, CHRNA1, CHRNG, and CHRND, compared to myogenic cells cultured alone. It appeared that neurons preferentially attached to myotubes and that neurite outgrowth was enhanced when neurons were cultured with myogenic cells compared to monoculture. In neural medium, rat mRNA levels of GAPDH, vimentin, Cdh13, and Ppp1r1a were greater in co‐culture, versus monoculture, whereas in muscle medium co‐culture lead to lower levels of Fth1, Rack1, vimentin, and Cdh13 than monoculture. These findings demonstrate mutually beneficial stimulatory signaling between rat cerebellar granule neurons and human myogenic cells, providing support for an active role for both the neuron and the muscle cell in stimulating neurite growth and myogenesis. Bidirectional muscle nerve signaling. |
format |
article |
author |
Michal Tamáš Stanislava Pankratova Peter Schjerling Casper Soendenbroe Ching‐Yan Chloé Yeung Cristian Pablo Pennisi Jens R. Jakobsen Michael R. Krogsgaard Michael Kjaer Abigail L. Mackey |
author_facet |
Michal Tamáš Stanislava Pankratova Peter Schjerling Casper Soendenbroe Ching‐Yan Chloé Yeung Cristian Pablo Pennisi Jens R. Jakobsen Michael R. Krogsgaard Michael Kjaer Abigail L. Mackey |
author_sort |
Michal Tamáš |
title |
Mutual stimulatory signaling between human myogenic cells and rat cerebellar neurons |
title_short |
Mutual stimulatory signaling between human myogenic cells and rat cerebellar neurons |
title_full |
Mutual stimulatory signaling between human myogenic cells and rat cerebellar neurons |
title_fullStr |
Mutual stimulatory signaling between human myogenic cells and rat cerebellar neurons |
title_full_unstemmed |
Mutual stimulatory signaling between human myogenic cells and rat cerebellar neurons |
title_sort |
mutual stimulatory signaling between human myogenic cells and rat cerebellar neurons |
publisher |
Wiley |
publishDate |
2021 |
url |
https://doaj.org/article/74cb20f03038431e9c90762e3b383d57 |
work_keys_str_mv |
AT michaltamas mutualstimulatorysignalingbetweenhumanmyogeniccellsandratcerebellarneurons AT stanislavapankratova mutualstimulatorysignalingbetweenhumanmyogeniccellsandratcerebellarneurons AT peterschjerling mutualstimulatorysignalingbetweenhumanmyogeniccellsandratcerebellarneurons AT caspersoendenbroe mutualstimulatorysignalingbetweenhumanmyogeniccellsandratcerebellarneurons AT chingyanchloeyeung mutualstimulatorysignalingbetweenhumanmyogeniccellsandratcerebellarneurons AT cristianpablopennisi mutualstimulatorysignalingbetweenhumanmyogeniccellsandratcerebellarneurons AT jensrjakobsen mutualstimulatorysignalingbetweenhumanmyogeniccellsandratcerebellarneurons AT michaelrkrogsgaard mutualstimulatorysignalingbetweenhumanmyogeniccellsandratcerebellarneurons AT michaelkjaer mutualstimulatorysignalingbetweenhumanmyogeniccellsandratcerebellarneurons AT abigaillmackey mutualstimulatorysignalingbetweenhumanmyogeniccellsandratcerebellarneurons |
_version_ |
1718428442419003392 |