Anillin propels myosin-independent constriction of actin rings
Cytokinetic ring constriction during cell division requires actin but curiously is independent of myosin in many organisms. Here, the authors show that anillin, a protein enriched in the contractile ring, is a non-motor actin crosslinker that generates contractile force in lieu of a molecular motor.
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/74ce9585db5b41f6ae365c30fb44216c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Cytokinetic ring constriction during cell division requires actin but curiously is independent of myosin in many organisms. Here, the authors show that anillin, a protein enriched in the contractile ring, is a non-motor actin crosslinker that generates contractile force in lieu of a molecular motor. |
---|