An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism

Abstract Venous thromboembolism is the third common cardiovascular disease and is composed of two entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help ident...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Misbah Razzaq, Maria Jesus Iglesias, Manal Ibrahim-Kosta, Louisa Goumidi, Omar Soukarieh, Carole Proust, Maguelonne Roux, Pierre Suchon, Anne Boland, Delphine Daiain, Robert Olaso, Sebastian Havervall, Charlotte Thalin, Lynn Butler, Jean-François Deleuze, Jacob Odeberg, Pierre-Emmanuel Morange, David-Alexandre Trégouët
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/74d0ce5beba343ef8ad57e5adf7555bd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:74d0ce5beba343ef8ad57e5adf7555bd
record_format dspace
spelling oai:doaj.org-article:74d0ce5beba343ef8ad57e5adf7555bd2021-12-02T15:22:56ZAn artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism10.1038/s41598-021-93390-72045-2322https://doaj.org/article/74d0ce5beba343ef8ad57e5adf7555bd2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93390-7https://doaj.org/toc/2045-2322Abstract Venous thromboembolism is the third common cardiovascular disease and is composed of two entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help identifying patients at high PE risk. To fill this need, we implemented a two hidden-layers artificial neural networks (ANN) on 376 antibodies and 19 biological traits measured in the plasma of 1388 DVT patients, with or without PE, of the MARTHA study. We used the LIME algorithm to obtain a linear approximate of the resulting ANN prediction model. As MARTHA patients were typed for genotyping DNA arrays, a genome wide association study (GWAS) was conducted on the LIME estimate. Detected single nucleotide polymorphisms (SNPs) were tested for association with PE risk in MARTHA. Main findings were replicated in the EOVT study composed of 143 PE patients and 196 DVT only patients. The derived ANN model for PE achieved an accuracy of 0.89 and 0.79 in our training and testing sets, respectively. A GWAS on the LIME approximate identified a strong statistical association peak (rs1424597: p = 5.3 × 10–7) at the PLXNA4 locus. Homozygote carriers for the rs1424597-A allele were then more frequently observed in PE than in DVT patients from the MARTHA (2% vs. 0.4%, p = 0.005) and the EOVT (3% vs. 0%, p = 0.013) studies. In a sample of 112 COVID-19 patients known to have endotheliopathy leading to acute lung injury and an increased risk of PE, decreased PLXNA4 levels were associated (p = 0.025) with worsened respiratory function. Using an original integrated proteomics and genetics strategy, we identified PLXNA4 as a new susceptibility gene for PE whose exact role now needs to be further elucidated.Misbah RazzaqMaria Jesus IglesiasManal Ibrahim-KostaLouisa GoumidiOmar SoukariehCarole ProustMaguelonne RouxPierre SuchonAnne BolandDelphine DaiainRobert OlasoSebastian HavervallCharlotte ThalinLynn ButlerJean-François DeleuzeJacob OdebergPierre-Emmanuel MorangeDavid-Alexandre TrégouëtNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Misbah Razzaq
Maria Jesus Iglesias
Manal Ibrahim-Kosta
Louisa Goumidi
Omar Soukarieh
Carole Proust
Maguelonne Roux
Pierre Suchon
Anne Boland
Delphine Daiain
Robert Olaso
Sebastian Havervall
Charlotte Thalin
Lynn Butler
Jean-François Deleuze
Jacob Odeberg
Pierre-Emmanuel Morange
David-Alexandre Trégouët
An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism
description Abstract Venous thromboembolism is the third common cardiovascular disease and is composed of two entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help identifying patients at high PE risk. To fill this need, we implemented a two hidden-layers artificial neural networks (ANN) on 376 antibodies and 19 biological traits measured in the plasma of 1388 DVT patients, with or without PE, of the MARTHA study. We used the LIME algorithm to obtain a linear approximate of the resulting ANN prediction model. As MARTHA patients were typed for genotyping DNA arrays, a genome wide association study (GWAS) was conducted on the LIME estimate. Detected single nucleotide polymorphisms (SNPs) were tested for association with PE risk in MARTHA. Main findings were replicated in the EOVT study composed of 143 PE patients and 196 DVT only patients. The derived ANN model for PE achieved an accuracy of 0.89 and 0.79 in our training and testing sets, respectively. A GWAS on the LIME approximate identified a strong statistical association peak (rs1424597: p = 5.3 × 10–7) at the PLXNA4 locus. Homozygote carriers for the rs1424597-A allele were then more frequently observed in PE than in DVT patients from the MARTHA (2% vs. 0.4%, p = 0.005) and the EOVT (3% vs. 0%, p = 0.013) studies. In a sample of 112 COVID-19 patients known to have endotheliopathy leading to acute lung injury and an increased risk of PE, decreased PLXNA4 levels were associated (p = 0.025) with worsened respiratory function. Using an original integrated proteomics and genetics strategy, we identified PLXNA4 as a new susceptibility gene for PE whose exact role now needs to be further elucidated.
format article
author Misbah Razzaq
Maria Jesus Iglesias
Manal Ibrahim-Kosta
Louisa Goumidi
Omar Soukarieh
Carole Proust
Maguelonne Roux
Pierre Suchon
Anne Boland
Delphine Daiain
Robert Olaso
Sebastian Havervall
Charlotte Thalin
Lynn Butler
Jean-François Deleuze
Jacob Odeberg
Pierre-Emmanuel Morange
David-Alexandre Trégouët
author_facet Misbah Razzaq
Maria Jesus Iglesias
Manal Ibrahim-Kosta
Louisa Goumidi
Omar Soukarieh
Carole Proust
Maguelonne Roux
Pierre Suchon
Anne Boland
Delphine Daiain
Robert Olaso
Sebastian Havervall
Charlotte Thalin
Lynn Butler
Jean-François Deleuze
Jacob Odeberg
Pierre-Emmanuel Morange
David-Alexandre Trégouët
author_sort Misbah Razzaq
title An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism
title_short An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism
title_full An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism
title_fullStr An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism
title_full_unstemmed An artificial neural network approach integrating plasma proteomics and genetic data identifies PLXNA4 as a new susceptibility locus for pulmonary embolism
title_sort artificial neural network approach integrating plasma proteomics and genetic data identifies plxna4 as a new susceptibility locus for pulmonary embolism
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/74d0ce5beba343ef8ad57e5adf7555bd
work_keys_str_mv AT misbahrazzaq anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT mariajesusiglesias anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT manalibrahimkosta anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT louisagoumidi anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT omarsoukarieh anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT caroleproust anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT maguelonneroux anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT pierresuchon anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT anneboland anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT delphinedaiain anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT robertolaso anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT sebastianhavervall anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT charlottethalin anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT lynnbutler anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT jeanfrancoisdeleuze anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT jacobodeberg anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT pierreemmanuelmorange anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT davidalexandretregouet anartificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT misbahrazzaq artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT mariajesusiglesias artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT manalibrahimkosta artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT louisagoumidi artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT omarsoukarieh artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT caroleproust artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT maguelonneroux artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT pierresuchon artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT anneboland artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT delphinedaiain artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT robertolaso artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT sebastianhavervall artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT charlottethalin artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT lynnbutler artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT jeanfrancoisdeleuze artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT jacobodeberg artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT pierreemmanuelmorange artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
AT davidalexandretregouet artificialneuralnetworkapproachintegratingplasmaproteomicsandgeneticdataidentifiesplxna4asanewsusceptibilitylocusforpulmonaryembolism
_version_ 1718387387202011136