Impact of PET data driven respiratory motion correction and BSREM reconstruction of 68Ga-DOTATATE PET/CT for differentiating neuroendocrine tumors (NET) and intrapancreatic accessory spleens (IPAS)

Abstract To evaluate whether quantitative PET parameters of motion-corrected 68Ga-DOTATATE PET/CT can differentiate between intrapancreatic accessory spleens (IPAS) and pancreatic neuroendocrine tumor (pNET). A total of 498 consecutive patients with neuroendocrine tumors (NET) who underwent 68Ga-DOT...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Virginia Liberini, Fotis Kotasidis, Valerie Treyer, Michael Messerli, Erika Orita, Ivette Engel-Bicik, Alexander Siebenhüner, Martin W. Huellner
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/74d979dc16c74a17b4fa5a481ac6f0c0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract To evaluate whether quantitative PET parameters of motion-corrected 68Ga-DOTATATE PET/CT can differentiate between intrapancreatic accessory spleens (IPAS) and pancreatic neuroendocrine tumor (pNET). A total of 498 consecutive patients with neuroendocrine tumors (NET) who underwent 68Ga-DOTATATE PET/CT between March 2017 and July 2019 were retrospectively analyzed. Subjects with accessory spleens (n = 43, thereof 7 IPAS) and pNET (n = 9) were included, resulting in a total of 45 scans. PET images were reconstructed using ordered-subsets expectation maximization (OSEM) and a fully convergent iterative image reconstruction algorithm with β-values of 1000 (BSREM1000). A data-driven gating (DDG) technique (MOTIONFREE, GE Healthcare) was applied to extract respiratory triggers and use them for PET motion correction within both reconstructions. PET parameters among different samples were compared using non-parametric tests. Receiver operating characteristics (ROC) analyzed the ability of PET parameters to differentiate IPAS and pNETs. SUVmax was able to distinguish pNET from accessory spleens and IPAs in BSREM1000 reconstructions (p < 0.05). This result was more reliable using DDG-based motion correction (p < 0.003) and was achieved in both OSEM and BSREM1000 reconstructions. For differentiating accessory spleens and pNETs with specificity 100%, the ROC analysis yielded an AUC of 0.742 (sensitivity 56%)/0.765 (sensitivity 56%)/0.846 (sensitivity 62%)/0.840 (sensitivity 63%) for SUVmax 36.7/41.9/36.9/41.7 in OSEM/BSREM1000/OSEM + DDG/BSREM1000 + DDG, respectively. BSREM1000 + DDG can accurately differentiate pNET from accessory spleen. Both BSREM1000 and DDG lead to a significant SUV increase compared to OSEM and non-motion-corrected data.