Heteromeric Anopheline odorant receptors exhibit distinct channel properties.

<h4>Background</h4>Insect odorant receptors (ORs) function as odorant-gated ion channels consisting of a conventional, odorant-binding OR and the Orco coreceptor. While Orco can function as a homomeric ion channel, the role(s) of the conventional OR in heteromeric OR complexes has largel...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Gregory M Pask, Patrick L Jones, Michael Rützler, David C Rinker, Laurence J Zwiebel
Format: article
Langue:EN
Publié: Public Library of Science (PLoS) 2011
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/74ef5fd23ceb4e3b9cf240e2ea6cae9b
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:<h4>Background</h4>Insect odorant receptors (ORs) function as odorant-gated ion channels consisting of a conventional, odorant-binding OR and the Orco coreceptor. While Orco can function as a homomeric ion channel, the role(s) of the conventional OR in heteromeric OR complexes has largely focused only on odorant recognition.<h4>Results</h4>To investigate other roles of odorant-binding ORs, we have employed patch clamp electrophysiology to investigate the properties of the channel pore of several OR complexes formed by a range of different odorant-specific Anopheles gambiae ORs (AgOrs) each paired with AgOrco. These studies reveal significant differences in cation permeability and ruthenium red susceptibility among different AgOr complexes.<h4>Conclusions</h4>With observable differences in channel function, the data support a model in which the odorant-binding OR also affects the channel pore. The variable effect contributed by the conventional OR on the conductive properties of odorant-gated sensory channels adds additional complexity to insect olfactory signaling, with differences in odor coding beginning with ORs on the periphery of the olfactory system.