CBAG: Conditional biomedical abstract generation.
Biomedical research papers often combine disjoint concepts in novel ways, such as when describing a newly discovered relationship between an understudied gene with an important disease. These concepts are often explicitly encoded as metadata keywords, such as the author-provided terms included with...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/74f0df3208804bc1b0c9d625465a318b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Biomedical research papers often combine disjoint concepts in novel ways, such as when describing a newly discovered relationship between an understudied gene with an important disease. These concepts are often explicitly encoded as metadata keywords, such as the author-provided terms included with many documents in the MEDLINE database. While substantial recent work has addressed the problem of text generation in a more general context, applications, such as scientific writing assistants, or hypothesis generation systems, could benefit from the capacity to select the specific set of concepts that underpin a generated biomedical text. We propose a conditional language model following the transformer architecture. This model uses the "encoder stack" to encode concepts that a user wishes to discuss in the generated text. The "decoder stack" then follows the masked self-attention pattern to perform text generation, using both prior tokens as well as the encoded condition. We demonstrate that this approach provides significant control, while still producing reasonable biomedical text. |
---|