Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial

Mo Dan,1,2 Michael T Tseng,3 Peng Wu,4 Jason M Unrine,5 Eric A Grulke,4 Robert A Yokel1,21Department of Pharmaceutical Sciences, College of Pharmacy, 2Graduate Center for Toxicology, University of Kentucky, Lexington, KY, USA; 3Departments of Anatomical Sciences and Neurobiology, University of Louis...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dan M, Tseng MT, Wu P, Unrine JM, Grulke EA, Yokel RA
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2012
Materias:
Acceso en línea:https://doaj.org/article/74f2ba54f7fe43cbb437edc6bf09a76c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:74f2ba54f7fe43cbb437edc6bf09a76c
record_format dspace
spelling oai:doaj.org-article:74f2ba54f7fe43cbb437edc6bf09a76c2021-12-02T05:09:46ZBrain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial1176-91141178-2013https://doaj.org/article/74f2ba54f7fe43cbb437edc6bf09a76c2012-07-01T00:00:00Zhttp://www.dovepress.com/brain-microvascular-endothelial-cell-association-and-distribution-of-a-a10533https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Mo Dan,1,2 Michael T Tseng,3 Peng Wu,4 Jason M Unrine,5 Eric A Grulke,4 Robert A Yokel1,21Department of Pharmaceutical Sciences, College of Pharmacy, 2Graduate Center for Toxicology, University of Kentucky, Lexington, KY, USA; 3Departments of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA; 4Chemical and Materials Engineering Department, 5Department of Plant and Soil Science, University of Kentucky, Lexington, KY, USAPurpose: Ceria engineered nanomaterials (ENMs) have current commercial applications and both neuroprotective and toxic effects. Our hypothesis is that ceria ENMs can associate with brain capillary cells and/or cross the blood–brain barrier.Methods: An aqueous dispersion of ~5 nm ceria ENM was synthesized and characterized in house. Its uptake space in the Sprague Dawley rat brain was determined using the in situ brain perfusion technique at 15 and 20 mL/minute flow rates; 30, 100, and 500 µg/mL ceria perfused for 120 seconds at 20 mL/minute; and 30 µg/mL perfused for 20, 60, and 120 seconds at 20 mL/minute. The capillary depletion method and light and electron microscopy were used to determine its capillary cell and brain parenchymal association and localization.Results: The vascular space was not significantly affected by brain perfusion flow rate or ENM, demonstrating that this ceria ENM did not influence blood–brain barrier integrity. Cerium concentrations, determined by inductively coupled plasma mass spectrometry, were significantly higher in the choroid plexus than in eight brain regions in the 100 and 500 µg/mL ceria perfusion groups. Ceria uptake into the eight brain regions was similar after 120-second perfusion of 30, 100, and 500 µg ceria/mL. Ceria uptake space significantly increased in the eight brain regions and choroid plexus after 60 versus 20 seconds, and it was similar after 60 and 120 seconds. The capillary depletion method showed 99.4% ± 1.1% of the ceria ENM associated with the capillary fraction. Electron microscopy showed the ceria ENM located on the endothelial cell luminal surface.Conclusion: Ceria ENM association with brain capillary endothelial cells saturated between 20 and 60 seconds and ceria ENM brain uptake was not diffusion-mediated. During the 120-second ceria ENM perfusion, ceria ENM predominately associated with the surface of the brain capillary cells, providing the opportunity for its cell uptake or redistribution back into circulating blood.Keywords: ceria engineered nanomaterial, brain microvascular endothelial cell association, in situ brain perfusion, capillary depletionDan MTseng MTWu PUnrine JMGrulke EAYokel RADove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2012, Iss default, Pp 4023-4036 (2012)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Dan M
Tseng MT
Wu P
Unrine JM
Grulke EA
Yokel RA
Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial
description Mo Dan,1,2 Michael T Tseng,3 Peng Wu,4 Jason M Unrine,5 Eric A Grulke,4 Robert A Yokel1,21Department of Pharmaceutical Sciences, College of Pharmacy, 2Graduate Center for Toxicology, University of Kentucky, Lexington, KY, USA; 3Departments of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA; 4Chemical and Materials Engineering Department, 5Department of Plant and Soil Science, University of Kentucky, Lexington, KY, USAPurpose: Ceria engineered nanomaterials (ENMs) have current commercial applications and both neuroprotective and toxic effects. Our hypothesis is that ceria ENMs can associate with brain capillary cells and/or cross the blood–brain barrier.Methods: An aqueous dispersion of ~5 nm ceria ENM was synthesized and characterized in house. Its uptake space in the Sprague Dawley rat brain was determined using the in situ brain perfusion technique at 15 and 20 mL/minute flow rates; 30, 100, and 500 µg/mL ceria perfused for 120 seconds at 20 mL/minute; and 30 µg/mL perfused for 20, 60, and 120 seconds at 20 mL/minute. The capillary depletion method and light and electron microscopy were used to determine its capillary cell and brain parenchymal association and localization.Results: The vascular space was not significantly affected by brain perfusion flow rate or ENM, demonstrating that this ceria ENM did not influence blood–brain barrier integrity. Cerium concentrations, determined by inductively coupled plasma mass spectrometry, were significantly higher in the choroid plexus than in eight brain regions in the 100 and 500 µg/mL ceria perfusion groups. Ceria uptake into the eight brain regions was similar after 120-second perfusion of 30, 100, and 500 µg ceria/mL. Ceria uptake space significantly increased in the eight brain regions and choroid plexus after 60 versus 20 seconds, and it was similar after 60 and 120 seconds. The capillary depletion method showed 99.4% ± 1.1% of the ceria ENM associated with the capillary fraction. Electron microscopy showed the ceria ENM located on the endothelial cell luminal surface.Conclusion: Ceria ENM association with brain capillary endothelial cells saturated between 20 and 60 seconds and ceria ENM brain uptake was not diffusion-mediated. During the 120-second ceria ENM perfusion, ceria ENM predominately associated with the surface of the brain capillary cells, providing the opportunity for its cell uptake or redistribution back into circulating blood.Keywords: ceria engineered nanomaterial, brain microvascular endothelial cell association, in situ brain perfusion, capillary depletion
format article
author Dan M
Tseng MT
Wu P
Unrine JM
Grulke EA
Yokel RA
author_facet Dan M
Tseng MT
Wu P
Unrine JM
Grulke EA
Yokel RA
author_sort Dan M
title Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial
title_short Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial
title_full Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial
title_fullStr Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial
title_full_unstemmed Brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial
title_sort brain microvascular endothelial cell association and distribution of a 5 nm ceria engineered nanomaterial
publisher Dove Medical Press
publishDate 2012
url https://doaj.org/article/74f2ba54f7fe43cbb437edc6bf09a76c
work_keys_str_mv AT danm brainmicrovascularendothelialcellassociationanddistributionofa5nmceriaengineerednanomaterial
AT tsengmt brainmicrovascularendothelialcellassociationanddistributionofa5nmceriaengineerednanomaterial
AT wup brainmicrovascularendothelialcellassociationanddistributionofa5nmceriaengineerednanomaterial
AT unrinejm brainmicrovascularendothelialcellassociationanddistributionofa5nmceriaengineerednanomaterial
AT grulkeea brainmicrovascularendothelialcellassociationanddistributionofa5nmceriaengineerednanomaterial
AT yokelra brainmicrovascularendothelialcellassociationanddistributionofa5nmceriaengineerednanomaterial
_version_ 1718400537058082816