Population Structure, Molecular Epidemiology, and β-Lactamase Diversity among <named-content content-type="genus-species">Stenotrophomonas maltophilia</named-content> Isolates in the United States

ABSTRACT Stenotrophomonas maltophilia is a Gram-negative, nonfermenting, environmental bacillus that is an important cause of nosocomial infections, primarily associated with the respiratory tract in the immunocompromised population. Aiming to understand the population structure, microbiological cha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Maria F. Mojica, Joseph D. Rutter, Magdalena Taracila, Luciano A. Abriata, Derrick E. Fouts, Krisztina M. Papp-Wallace, Thomas J. Walsh, John J. LiPuma, Alejandro J. Vila, Robert A. Bonomo
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://doaj.org/article/74f43e950589466ebcb84a07aead5778
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:74f43e950589466ebcb84a07aead5778
record_format dspace
spelling oai:doaj.org-article:74f43e950589466ebcb84a07aead57782021-11-15T16:22:10ZPopulation Structure, Molecular Epidemiology, and β-Lactamase Diversity among <named-content content-type="genus-species">Stenotrophomonas maltophilia</named-content> Isolates in the United States10.1128/mBio.00405-192150-7511https://doaj.org/article/74f43e950589466ebcb84a07aead57782019-08-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00405-19https://doaj.org/toc/2150-7511ABSTRACT Stenotrophomonas maltophilia is a Gram-negative, nonfermenting, environmental bacillus that is an important cause of nosocomial infections, primarily associated with the respiratory tract in the immunocompromised population. Aiming to understand the population structure, microbiological characteristics and impact of allelic variation on β-lactamase structure and function, we collected 130 clinical isolates from across the United States. Identification of 90 different sequence types (STs), of which 63 are new allelic combinations, demonstrates the high diversity of this species. The majority of the isolates (45%) belong to genomic group 6. We also report excellent activity of the ceftazidime-avibactam and aztreonam combination, especially against strains recovered from blood and respiratory infections for which the susceptibility is higher than the susceptibility to trimethoprim-sulfamethoxazole, considered the “first-line” antibiotic to treat S. maltophilia. Analysis of 73 blaL1 and 116 blaL2 genes identified 35 and 43 novel variants of L1 and L2 β-lactamases, respectively. Investigation of the derived amino acid sequences showed that substitutions are mostly conservative and scattered throughout the protein, preferentially affecting positions that do not compromise enzyme function but that may have an impact on substrate and inhibitor binding. Interestingly, we detected a probable association between a specific type of L1 and L2 and genomic group 6. Taken together, our results provide an overview of the molecular epidemiology of S. maltophilia clinical strains from the United States. In particular, the discovery of new L1 and L2 variants warrants further study to fully understand the relationship between them and the β-lactam resistance phenotype in this pathogen. IMPORTANCE Multiple antibiotic resistance mechanisms, including two β-lactamases, L1, a metallo-β-lactamase, and L2, a class A cephalosporinase, make S. maltophilia naturally multidrug resistant. Thus, infections caused by S. maltophilia pose a big therapeutic challenge. Our study aims to understand the microbiological and molecular characteristics of S. maltophilia isolates recovered from human sources. A highlight of the resistance profile of this collection is the excellent activity of the ceftazidime-avibactam and aztreonam combination. We hope this result prompts controlled and observational studies to add clinical data on the utility and safety of this therapy. We also identify 35 and 43 novel variants of L1 and L2, respectively, some of which harbor novel substitutions that could potentially affect substrate and/or inhibitor binding. We believe our results provide valuable knowledge to understand the epidemiology of this species and to advance mechanism-based inhibitor design to add to the limited arsenal of antibiotics active against this pathogen.Maria F. MojicaJoseph D. RutterMagdalena TaracilaLuciano A. AbriataDerrick E. FoutsKrisztina M. Papp-WallaceThomas J. WalshJohn J. LiPumaAlejandro J. VilaRobert A. BonomoAmerican Society for MicrobiologyarticleStenotrophomonas maltophiliaantibiotic resistancebeta-lactamasesmolecular epidemiologyMicrobiologyQR1-502ENmBio, Vol 10, Iss 4 (2019)
institution DOAJ
collection DOAJ
language EN
topic Stenotrophomonas maltophilia
antibiotic resistance
beta-lactamases
molecular epidemiology
Microbiology
QR1-502
spellingShingle Stenotrophomonas maltophilia
antibiotic resistance
beta-lactamases
molecular epidemiology
Microbiology
QR1-502
Maria F. Mojica
Joseph D. Rutter
Magdalena Taracila
Luciano A. Abriata
Derrick E. Fouts
Krisztina M. Papp-Wallace
Thomas J. Walsh
John J. LiPuma
Alejandro J. Vila
Robert A. Bonomo
Population Structure, Molecular Epidemiology, and β-Lactamase Diversity among <named-content content-type="genus-species">Stenotrophomonas maltophilia</named-content> Isolates in the United States
description ABSTRACT Stenotrophomonas maltophilia is a Gram-negative, nonfermenting, environmental bacillus that is an important cause of nosocomial infections, primarily associated with the respiratory tract in the immunocompromised population. Aiming to understand the population structure, microbiological characteristics and impact of allelic variation on β-lactamase structure and function, we collected 130 clinical isolates from across the United States. Identification of 90 different sequence types (STs), of which 63 are new allelic combinations, demonstrates the high diversity of this species. The majority of the isolates (45%) belong to genomic group 6. We also report excellent activity of the ceftazidime-avibactam and aztreonam combination, especially against strains recovered from blood and respiratory infections for which the susceptibility is higher than the susceptibility to trimethoprim-sulfamethoxazole, considered the “first-line” antibiotic to treat S. maltophilia. Analysis of 73 blaL1 and 116 blaL2 genes identified 35 and 43 novel variants of L1 and L2 β-lactamases, respectively. Investigation of the derived amino acid sequences showed that substitutions are mostly conservative and scattered throughout the protein, preferentially affecting positions that do not compromise enzyme function but that may have an impact on substrate and inhibitor binding. Interestingly, we detected a probable association between a specific type of L1 and L2 and genomic group 6. Taken together, our results provide an overview of the molecular epidemiology of S. maltophilia clinical strains from the United States. In particular, the discovery of new L1 and L2 variants warrants further study to fully understand the relationship between them and the β-lactam resistance phenotype in this pathogen. IMPORTANCE Multiple antibiotic resistance mechanisms, including two β-lactamases, L1, a metallo-β-lactamase, and L2, a class A cephalosporinase, make S. maltophilia naturally multidrug resistant. Thus, infections caused by S. maltophilia pose a big therapeutic challenge. Our study aims to understand the microbiological and molecular characteristics of S. maltophilia isolates recovered from human sources. A highlight of the resistance profile of this collection is the excellent activity of the ceftazidime-avibactam and aztreonam combination. We hope this result prompts controlled and observational studies to add clinical data on the utility and safety of this therapy. We also identify 35 and 43 novel variants of L1 and L2, respectively, some of which harbor novel substitutions that could potentially affect substrate and/or inhibitor binding. We believe our results provide valuable knowledge to understand the epidemiology of this species and to advance mechanism-based inhibitor design to add to the limited arsenal of antibiotics active against this pathogen.
format article
author Maria F. Mojica
Joseph D. Rutter
Magdalena Taracila
Luciano A. Abriata
Derrick E. Fouts
Krisztina M. Papp-Wallace
Thomas J. Walsh
John J. LiPuma
Alejandro J. Vila
Robert A. Bonomo
author_facet Maria F. Mojica
Joseph D. Rutter
Magdalena Taracila
Luciano A. Abriata
Derrick E. Fouts
Krisztina M. Papp-Wallace
Thomas J. Walsh
John J. LiPuma
Alejandro J. Vila
Robert A. Bonomo
author_sort Maria F. Mojica
title Population Structure, Molecular Epidemiology, and β-Lactamase Diversity among <named-content content-type="genus-species">Stenotrophomonas maltophilia</named-content> Isolates in the United States
title_short Population Structure, Molecular Epidemiology, and β-Lactamase Diversity among <named-content content-type="genus-species">Stenotrophomonas maltophilia</named-content> Isolates in the United States
title_full Population Structure, Molecular Epidemiology, and β-Lactamase Diversity among <named-content content-type="genus-species">Stenotrophomonas maltophilia</named-content> Isolates in the United States
title_fullStr Population Structure, Molecular Epidemiology, and β-Lactamase Diversity among <named-content content-type="genus-species">Stenotrophomonas maltophilia</named-content> Isolates in the United States
title_full_unstemmed Population Structure, Molecular Epidemiology, and β-Lactamase Diversity among <named-content content-type="genus-species">Stenotrophomonas maltophilia</named-content> Isolates in the United States
title_sort population structure, molecular epidemiology, and β-lactamase diversity among <named-content content-type="genus-species">stenotrophomonas maltophilia</named-content> isolates in the united states
publisher American Society for Microbiology
publishDate 2019
url https://doaj.org/article/74f43e950589466ebcb84a07aead5778
work_keys_str_mv AT mariafmojica populationstructuremolecularepidemiologyandblactamasediversityamongnamedcontentcontenttypegenusspeciesstenotrophomonasmaltophilianamedcontentisolatesintheunitedstates
AT josephdrutter populationstructuremolecularepidemiologyandblactamasediversityamongnamedcontentcontenttypegenusspeciesstenotrophomonasmaltophilianamedcontentisolatesintheunitedstates
AT magdalenataracila populationstructuremolecularepidemiologyandblactamasediversityamongnamedcontentcontenttypegenusspeciesstenotrophomonasmaltophilianamedcontentisolatesintheunitedstates
AT lucianoaabriata populationstructuremolecularepidemiologyandblactamasediversityamongnamedcontentcontenttypegenusspeciesstenotrophomonasmaltophilianamedcontentisolatesintheunitedstates
AT derrickefouts populationstructuremolecularepidemiologyandblactamasediversityamongnamedcontentcontenttypegenusspeciesstenotrophomonasmaltophilianamedcontentisolatesintheunitedstates
AT krisztinampappwallace populationstructuremolecularepidemiologyandblactamasediversityamongnamedcontentcontenttypegenusspeciesstenotrophomonasmaltophilianamedcontentisolatesintheunitedstates
AT thomasjwalsh populationstructuremolecularepidemiologyandblactamasediversityamongnamedcontentcontenttypegenusspeciesstenotrophomonasmaltophilianamedcontentisolatesintheunitedstates
AT johnjlipuma populationstructuremolecularepidemiologyandblactamasediversityamongnamedcontentcontenttypegenusspeciesstenotrophomonasmaltophilianamedcontentisolatesintheunitedstates
AT alejandrojvila populationstructuremolecularepidemiologyandblactamasediversityamongnamedcontentcontenttypegenusspeciesstenotrophomonasmaltophilianamedcontentisolatesintheunitedstates
AT robertabonomo populationstructuremolecularepidemiologyandblactamasediversityamongnamedcontentcontenttypegenusspeciesstenotrophomonasmaltophilianamedcontentisolatesintheunitedstates
_version_ 1718426908341829632