A Novel Balance Control Strategy Based on Enhanced Stability Pyramid Index and Dynamic Movement Primitives for a Lower Limb Human-Exoskeleton System

The lower limb exoskeleton is playing an increasing role in enabling individuals with spinal cord injury (SCI) to stand upright, walk, turn, and so on. Hence, it is essential to maintain the balance of the human-exoskeleton system during movements. However, the balance of the human-exoskeleton syste...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fashu Xu, Jing Qiu, Wenbo Yuan, Hong Cheng
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/74faa44b00a946859721131037985ffb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:74faa44b00a946859721131037985ffb
record_format dspace
spelling oai:doaj.org-article:74faa44b00a946859721131037985ffb2021-12-01T02:23:12ZA Novel Balance Control Strategy Based on Enhanced Stability Pyramid Index and Dynamic Movement Primitives for a Lower Limb Human-Exoskeleton System1662-521810.3389/fnbot.2021.751642https://doaj.org/article/74faa44b00a946859721131037985ffb2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fnbot.2021.751642/fullhttps://doaj.org/toc/1662-5218The lower limb exoskeleton is playing an increasing role in enabling individuals with spinal cord injury (SCI) to stand upright, walk, turn, and so on. Hence, it is essential to maintain the balance of the human-exoskeleton system during movements. However, the balance of the human-exoskeleton system is challenging to maintain. There are no effective balance control strategies because most of them can only be used in a specific movement like walking or standing. Hence, the primary aim of the current study is to propose a balance control strategy to improve the balance of the human-exoskeleton system in dynamic movements. This study proposes a new safety index named Enhanced Stability Pyramid Index (ESPI), and a new balance control strategy is based on the ESPI and the Dynamic Movement Primitives (DMPs). To incorporate dynamic information of the system, the ESPI employs eXtrapolated Center of Mass (XCoM) instead of the center of mass (CoM). Meanwhile, Time-to-Contact (TTC), the urgency of safety, is used as an automatic weight assignment factor of ESPI instead of the traditional manual one. Then, the balance control strategy utilizing DMPs to generate the gait trajectory according to the scalar and vector values of the ESPI is proposed. Finally, the walking simulation in Gazebo and the experiments of the human-exoskeleton system verify the effectiveness of the index and balance control strategy.Fashu XuFashu XuFashu XuJing QiuJing QiuJing QiuJing QiuWenbo YuanWenbo YuanWenbo YuanHong ChengHong ChengHong ChengFrontiers Media S.A.articlehuman-exoskeletonenhanced stability pyramiddynamic movement primitivessafetygait planningXCoMNeurosciences. Biological psychiatry. NeuropsychiatryRC321-571ENFrontiers in Neurorobotics, Vol 15 (2021)
institution DOAJ
collection DOAJ
language EN
topic human-exoskeleton
enhanced stability pyramid
dynamic movement primitives
safety
gait planning
XCoM
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
spellingShingle human-exoskeleton
enhanced stability pyramid
dynamic movement primitives
safety
gait planning
XCoM
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
Fashu Xu
Fashu Xu
Fashu Xu
Jing Qiu
Jing Qiu
Jing Qiu
Jing Qiu
Wenbo Yuan
Wenbo Yuan
Wenbo Yuan
Hong Cheng
Hong Cheng
Hong Cheng
A Novel Balance Control Strategy Based on Enhanced Stability Pyramid Index and Dynamic Movement Primitives for a Lower Limb Human-Exoskeleton System
description The lower limb exoskeleton is playing an increasing role in enabling individuals with spinal cord injury (SCI) to stand upright, walk, turn, and so on. Hence, it is essential to maintain the balance of the human-exoskeleton system during movements. However, the balance of the human-exoskeleton system is challenging to maintain. There are no effective balance control strategies because most of them can only be used in a specific movement like walking or standing. Hence, the primary aim of the current study is to propose a balance control strategy to improve the balance of the human-exoskeleton system in dynamic movements. This study proposes a new safety index named Enhanced Stability Pyramid Index (ESPI), and a new balance control strategy is based on the ESPI and the Dynamic Movement Primitives (DMPs). To incorporate dynamic information of the system, the ESPI employs eXtrapolated Center of Mass (XCoM) instead of the center of mass (CoM). Meanwhile, Time-to-Contact (TTC), the urgency of safety, is used as an automatic weight assignment factor of ESPI instead of the traditional manual one. Then, the balance control strategy utilizing DMPs to generate the gait trajectory according to the scalar and vector values of the ESPI is proposed. Finally, the walking simulation in Gazebo and the experiments of the human-exoskeleton system verify the effectiveness of the index and balance control strategy.
format article
author Fashu Xu
Fashu Xu
Fashu Xu
Jing Qiu
Jing Qiu
Jing Qiu
Jing Qiu
Wenbo Yuan
Wenbo Yuan
Wenbo Yuan
Hong Cheng
Hong Cheng
Hong Cheng
author_facet Fashu Xu
Fashu Xu
Fashu Xu
Jing Qiu
Jing Qiu
Jing Qiu
Jing Qiu
Wenbo Yuan
Wenbo Yuan
Wenbo Yuan
Hong Cheng
Hong Cheng
Hong Cheng
author_sort Fashu Xu
title A Novel Balance Control Strategy Based on Enhanced Stability Pyramid Index and Dynamic Movement Primitives for a Lower Limb Human-Exoskeleton System
title_short A Novel Balance Control Strategy Based on Enhanced Stability Pyramid Index and Dynamic Movement Primitives for a Lower Limb Human-Exoskeleton System
title_full A Novel Balance Control Strategy Based on Enhanced Stability Pyramid Index and Dynamic Movement Primitives for a Lower Limb Human-Exoskeleton System
title_fullStr A Novel Balance Control Strategy Based on Enhanced Stability Pyramid Index and Dynamic Movement Primitives for a Lower Limb Human-Exoskeleton System
title_full_unstemmed A Novel Balance Control Strategy Based on Enhanced Stability Pyramid Index and Dynamic Movement Primitives for a Lower Limb Human-Exoskeleton System
title_sort novel balance control strategy based on enhanced stability pyramid index and dynamic movement primitives for a lower limb human-exoskeleton system
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/74faa44b00a946859721131037985ffb
work_keys_str_mv AT fashuxu anovelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT fashuxu anovelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT fashuxu anovelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT jingqiu anovelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT jingqiu anovelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT jingqiu anovelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT jingqiu anovelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT wenboyuan anovelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT wenboyuan anovelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT wenboyuan anovelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT hongcheng anovelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT hongcheng anovelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT hongcheng anovelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT fashuxu novelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT fashuxu novelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT fashuxu novelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT jingqiu novelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT jingqiu novelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT jingqiu novelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT jingqiu novelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT wenboyuan novelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT wenboyuan novelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT wenboyuan novelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT hongcheng novelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT hongcheng novelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
AT hongcheng novelbalancecontrolstrategybasedonenhancedstabilitypyramidindexanddynamicmovementprimitivesforalowerlimbhumanexoskeletonsystem
_version_ 1718405910591700992