Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment
Phong A Tran,1–3 Neil O’Brien-Simpson,4 Jason A Palmer,5 Nathalie Bock1,6 Eric C Reynolds,4 Thomas J Webster,7 Anand Deva,8 Wayne A Morrison,5 Andrea J O’Connor31School of Chemistry, Physics and Mechanical Engeneering, Faculty of Science and Engeneering, Queensland Univ...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/75244b587a2a4371b5b70743ed26b109 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:75244b587a2a4371b5b70743ed26b109 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:75244b587a2a4371b5b70743ed26b1092021-12-02T06:23:55ZSelenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment1178-2013https://doaj.org/article/75244b587a2a4371b5b70743ed26b1092019-07-01T00:00:00Zhttps://www.dovepress.com/selenium-nanoparticles-as-anti-infective-implant-coatings-for-trauma-o-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Phong A Tran,1–3 Neil O’Brien-Simpson,4 Jason A Palmer,5 Nathalie Bock1,6 Eric C Reynolds,4 Thomas J Webster,7 Anand Deva,8 Wayne A Morrison,5 Andrea J O’Connor31School of Chemistry, Physics and Mechanical Engeneering, Faculty of Science and Engeneering, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia; 2Interface Science and Materials Engineering Group, School of Chemistry, Physics & Mechanical Engineering, QUT, Brisbane, Queensland 4000, Australia; 3Departments of Chemical and Biomedical Engineering, The Particulate Fluid Processing Centre, The University of Melbourne, Melbourne, Victoria 3010, Australia; 4Oral Health Cooperative Research Centre, Melbourne Dental School, The University of Melbourne, Melbourne, Victoria 3010, Australia; 5O’ Brien Institute, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia; 6School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Translational Research Institute, QUT, Brisbane, QLD, Australia; 7Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; 8Surgical Infection Research Group, Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, AustraliaBackground: Bacterial infection is a common and serious complication in orthopedic implants following traumatic injury, which is often associated with extensive soft tissue damage and contaminated wounds. Multidrug-resistant bacteria have been found in these infected wounds, especially in patients who have multi trauma and prolonged stay in intensive care units.Purpose: The objective of this study was to develop a coating on orthopedic implants that is effective against drug-resistant bacteria.Methods and results: We applied nanoparticles (30-70nm) of the trace element selenium (Se) as a coating through surface-induced nucleation-deposition on titanium implants and investigated the antimicrobial activity against drug resistant bacteria including Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-resistant Staphylococcus epidermidis (MRSE) in vitro and in an infected femur model in rats.The nanoparticles were shown in vitro to have antimicrobial activity at concentrations as low as 0.5ppm. The nanoparticle coatings strongly inhibited biofilm formation on the implants and reduced the number of viable bacteria in the surrounding tissue following inoculation of implants with biofilm forming doses of bacteria.Conclusion: This study shows a proof of concept for a selenium nanoparticle coatings as a potential anti-infective barrier for orthopedic medical devices in the setting of contamination with multi-resistant bacteria. It also represents one of the few (if only) in vivo assessment of selenium nanoparticle coatings on reducing antibiotic-resistant orthopedic implant infections.Keywords: orthopedic, implants, antimicrobial, biofilm, selenium, nanoparticlesTran PAO'Brien-Simpson NPalmer JABock NReynolds ECWebster TJDeva AMorrison WAO'Connor AJDove Medical PressarticleorthopaedicimplantsantimicrobialbiofilmseleniumnanoparticlesMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 14, Pp 4613-4624 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
orthopaedic implants antimicrobial biofilm selenium nanoparticles Medicine (General) R5-920 |
spellingShingle |
orthopaedic implants antimicrobial biofilm selenium nanoparticles Medicine (General) R5-920 Tran PA O'Brien-Simpson N Palmer JA Bock N Reynolds EC Webster TJ Deva A Morrison WA O'Connor AJ Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment |
description |
Phong A Tran,1–3 Neil O’Brien-Simpson,4 Jason A Palmer,5 Nathalie Bock1,6 Eric C Reynolds,4 Thomas J Webster,7 Anand Deva,8 Wayne A Morrison,5 Andrea J O’Connor31School of Chemistry, Physics and Mechanical Engeneering, Faculty of Science and Engeneering, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia; 2Interface Science and Materials Engineering Group, School of Chemistry, Physics & Mechanical Engineering, QUT, Brisbane, Queensland 4000, Australia; 3Departments of Chemical and Biomedical Engineering, The Particulate Fluid Processing Centre, The University of Melbourne, Melbourne, Victoria 3010, Australia; 4Oral Health Cooperative Research Centre, Melbourne Dental School, The University of Melbourne, Melbourne, Victoria 3010, Australia; 5O’ Brien Institute, St. Vincent’s Institute of Medical Research, Fitzroy, Victoria 3065, Australia; 6School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Translational Research Institute, QUT, Brisbane, QLD, Australia; 7Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; 8Surgical Infection Research Group, Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, AustraliaBackground: Bacterial infection is a common and serious complication in orthopedic implants following traumatic injury, which is often associated with extensive soft tissue damage and contaminated wounds. Multidrug-resistant bacteria have been found in these infected wounds, especially in patients who have multi trauma and prolonged stay in intensive care units.Purpose: The objective of this study was to develop a coating on orthopedic implants that is effective against drug-resistant bacteria.Methods and results: We applied nanoparticles (30-70nm) of the trace element selenium (Se) as a coating through surface-induced nucleation-deposition on titanium implants and investigated the antimicrobial activity against drug resistant bacteria including Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-resistant Staphylococcus epidermidis (MRSE) in vitro and in an infected femur model in rats.The nanoparticles were shown in vitro to have antimicrobial activity at concentrations as low as 0.5ppm. The nanoparticle coatings strongly inhibited biofilm formation on the implants and reduced the number of viable bacteria in the surrounding tissue following inoculation of implants with biofilm forming doses of bacteria.Conclusion: This study shows a proof of concept for a selenium nanoparticle coatings as a potential anti-infective barrier for orthopedic medical devices in the setting of contamination with multi-resistant bacteria. It also represents one of the few (if only) in vivo assessment of selenium nanoparticle coatings on reducing antibiotic-resistant orthopedic implant infections.Keywords: orthopedic, implants, antimicrobial, biofilm, selenium, nanoparticles |
format |
article |
author |
Tran PA O'Brien-Simpson N Palmer JA Bock N Reynolds EC Webster TJ Deva A Morrison WA O'Connor AJ |
author_facet |
Tran PA O'Brien-Simpson N Palmer JA Bock N Reynolds EC Webster TJ Deva A Morrison WA O'Connor AJ |
author_sort |
Tran PA |
title |
Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment |
title_short |
Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment |
title_full |
Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment |
title_fullStr |
Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment |
title_full_unstemmed |
Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment |
title_sort |
selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant staphylococcus aureus and epidermidis: in vitro and in vivo assessment |
publisher |
Dove Medical Press |
publishDate |
2019 |
url |
https://doaj.org/article/75244b587a2a4371b5b70743ed26b109 |
work_keys_str_mv |
AT tranpa seleniumnanoparticlesasantiinfectiveimplantcoatingsfortraumaorthopedicsagainstmethicillinresistantstaphylococcusaureusandepidermidisinvitroandinvivoassessment AT obriensimpsonn seleniumnanoparticlesasantiinfectiveimplantcoatingsfortraumaorthopedicsagainstmethicillinresistantstaphylococcusaureusandepidermidisinvitroandinvivoassessment AT palmerja seleniumnanoparticlesasantiinfectiveimplantcoatingsfortraumaorthopedicsagainstmethicillinresistantstaphylococcusaureusandepidermidisinvitroandinvivoassessment AT bockn seleniumnanoparticlesasantiinfectiveimplantcoatingsfortraumaorthopedicsagainstmethicillinresistantstaphylococcusaureusandepidermidisinvitroandinvivoassessment AT reynoldsec seleniumnanoparticlesasantiinfectiveimplantcoatingsfortraumaorthopedicsagainstmethicillinresistantstaphylococcusaureusandepidermidisinvitroandinvivoassessment AT webstertj seleniumnanoparticlesasantiinfectiveimplantcoatingsfortraumaorthopedicsagainstmethicillinresistantstaphylococcusaureusandepidermidisinvitroandinvivoassessment AT devaa seleniumnanoparticlesasantiinfectiveimplantcoatingsfortraumaorthopedicsagainstmethicillinresistantstaphylococcusaureusandepidermidisinvitroandinvivoassessment AT morrisonwa seleniumnanoparticlesasantiinfectiveimplantcoatingsfortraumaorthopedicsagainstmethicillinresistantstaphylococcusaureusandepidermidisinvitroandinvivoassessment AT oconnoraj seleniumnanoparticlesasantiinfectiveimplantcoatingsfortraumaorthopedicsagainstmethicillinresistantstaphylococcusaureusandepidermidisinvitroandinvivoassessment |
_version_ |
1718399941905219584 |