Impact of Synaptic Device Variations on Classification Accuracy in a Binarized Neural Network

Abstract Brain-inspired neuromorphic systems (hardware neural networks) are expected to be an energy-efficient computing architecture for solving cognitive tasks, which critically depend on the development of reliable synaptic weight storage (i.e., synaptic device). Although various nanoelectronic d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sungho Kim, Hee-Dong Kim, Sung-Jin Choi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
R
Q
Acceso en línea:https://doaj.org/article/7528dffafed64e5f861963b6b1186d67
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!