Impact of Synaptic Device Variations on Classification Accuracy in a Binarized Neural Network
Abstract Brain-inspired neuromorphic systems (hardware neural networks) are expected to be an energy-efficient computing architecture for solving cognitive tasks, which critically depend on the development of reliable synaptic weight storage (i.e., synaptic device). Although various nanoelectronic d...
Guardado en:
Autores principales: | Sungho Kim, Hee-Dong Kim, Sung-Jin Choi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7528dffafed64e5f861963b6b1186d67 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Binarized Neural Network with Silicon Nanosheet Synaptic Transistors for Supervised Pattern Classification
por: Sungho Kim, et al.
Publicado: (2019) -
Synaptic metaplasticity in binarized neural networks
por: Axel Laborieux, et al.
Publicado: (2021) -
An adiabatic method to train binarized artificial neural networks
por: Yuansheng Zhao, et al.
Publicado: (2021) -
Gradient Decomposition Methods for Training Neural Networks With Non-ideal Synaptic Devices
por: Junyun Zhao, et al.
Publicado: (2021) -
The impact of different thresholds on optical coherence tomography angiography images binarization and quantitative metrics
por: Alessandro Arrigo, et al.
Publicado: (2021)