Online Learning of Oil Leak Anomalies in Wind Turbines with Block-Based Binary Reservoir
The focus of this work is to design a deeply quantized anomaly detector of oil leaks that may happen at the junction between the wind turbine high-speed shaft and the external bracket of the power generator. We propose a block-based binary shallow echo state network (BBS-ESN) architecture belonging...
Guardado en:
Autores principales: | Matteo Cardoni, Danilo Pietro Pau, Laura Falaschetti, Claudio Turchetti, Marco Lattuada |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/752c8b673a104a1db2ba206ae45870f9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Synthetic image dataset of shaft junctions inside wind turbines in presence or absence of oil leaks
por: Matteo Cardoni, et al.
Publicado: (2021) -
On the quantisation and anomalies of antisymmetric tensor-spinors
por: Victor Lekeu, et al.
Publicado: (2021) -
Deformations of supergravity and supersymmetry anomalies
por: Markus B. Fröb, et al.
Publicado: (2021) -
New Bouguer Anomaly Map for the Territory of the Slovenia
por: Klemen Medved, et al.
Publicado: (2021) -
On–Off Scheduling for Electric Vehicle Charging in Two-Links Charging Stations Using Binary Optimization Approaches
por: Rafał Zdunek, et al.
Publicado: (2021)