The Facile Modification of Polyacrylate Emulsion via Hexadecane to Enhance Controlled-release Profiles of Coated Urea

Abstract Development of controlled-release urea (CRU) has attracted research attention because of food scarcity problems and environmental concerns. To slow down the nutrient release of CRU coated with waterborne polyacrylate, conventional emulsion polymerization (CEP), conventional emulsion polymer...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yazhen Shen, Changwen Du, Jianmin Zhou, Fei Ma
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/752d3fb62ab74c69b36080d969edf5f7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Development of controlled-release urea (CRU) has attracted research attention because of food scarcity problems and environmental concerns. To slow down the nutrient release of CRU coated with waterborne polyacrylate, conventional emulsion polymerization (CEP), conventional emulsion polymerization containing hexadecane (CEP + HD), and miniemulsion polymerization (MP) were carried out to discern the influence of polymerization technique and hexadecane on the properties of emulsions, films, and on the resultant nutrient release profiles of controlled-release urea. The addition of hexadecane improved water resistance, decreased the glass-transition temperature, and slowed down the nutrient release. CEP + HD was superior to MP in retarding nutrient release since the majority of HD was distributed in the exteriors of the particles of the former and interiors of the particles of the latter. Exterior HD improved water resistance more effectively, while interior HD reduced glass-transition temperature more significantly. Overall, our findings showed that incorporation of HD into polyacrylate emulsion produces excellent coatings that delay the release of urea. It has great potential application in controlled-release fertilizers coated with waterborne polymers.