Slices to sums of adjoint orbits, the Atiyah-Hitchin manifold, and Hilbert schemes of points

We show that the regular Slodowy slice to the sum of two semisimple adjoint orbits of GL(n, ℂ) is isomorphic to the deformation of the D2-singularity if n = 2, the Dancer deformation of the double cover of the Atiyah-Hitchin manifold if n = 3, and to the Atiyah-Hitchin manifold itself if n = 4. For...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bielawski Roger
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2017
Materias:
Acceso en línea:https://doaj.org/article/7534528826304ae88b8fc1b8cfacd4bd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We show that the regular Slodowy slice to the sum of two semisimple adjoint orbits of GL(n, ℂ) is isomorphic to the deformation of the D2-singularity if n = 2, the Dancer deformation of the double cover of the Atiyah-Hitchin manifold if n = 3, and to the Atiyah-Hitchin manifold itself if n = 4. For higher n, such slices to the sum of two orbits, each having only two distinct eigenvalues, are either empty or biholomorphic to open subsets of the Hilbert scheme of points on one of the above surfaces. In particular, these open subsets of Hilbert schemes of points carry complete hyperkähler metrics. In the case of the double cover of the Atiyah-Hitchin manifold this metric turns out to be the natural L2-metric on a hyperkähler submanifold of the monopole moduli space.