Slices to sums of adjoint orbits, the Atiyah-Hitchin manifold, and Hilbert schemes of points

We show that the regular Slodowy slice to the sum of two semisimple adjoint orbits of GL(n, ℂ) is isomorphic to the deformation of the D2-singularity if n = 2, the Dancer deformation of the double cover of the Atiyah-Hitchin manifold if n = 3, and to the Atiyah-Hitchin manifold itself if n = 4. For...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bielawski Roger
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2017
Materias:
Acceso en línea:https://doaj.org/article/7534528826304ae88b8fc1b8cfacd4bd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7534528826304ae88b8fc1b8cfacd4bd
record_format dspace
spelling oai:doaj.org-article:7534528826304ae88b8fc1b8cfacd4bd2021-12-02T17:14:47ZSlices to sums of adjoint orbits, the Atiyah-Hitchin manifold, and Hilbert schemes of points2300-744310.1515/coma-2017-0003https://doaj.org/article/7534528826304ae88b8fc1b8cfacd4bd2017-02-01T00:00:00Zhttps://doi.org/10.1515/coma-2017-0003https://doaj.org/toc/2300-7443We show that the regular Slodowy slice to the sum of two semisimple adjoint orbits of GL(n, ℂ) is isomorphic to the deformation of the D2-singularity if n = 2, the Dancer deformation of the double cover of the Atiyah-Hitchin manifold if n = 3, and to the Atiyah-Hitchin manifold itself if n = 4. For higher n, such slices to the sum of two orbits, each having only two distinct eigenvalues, are either empty or biholomorphic to open subsets of the Hilbert scheme of points on one of the above surfaces. In particular, these open subsets of Hilbert schemes of points carry complete hyperkähler metrics. In the case of the double cover of the Atiyah-Hitchin manifold this metric turns out to be the natural L2-metric on a hyperkähler submanifold of the monopole moduli space.Bielawski RogerDe GruyterarticleMathematicsQA1-939ENComplex Manifolds, Vol 4, Iss 1, Pp 16-36 (2017)
institution DOAJ
collection DOAJ
language EN
topic Mathematics
QA1-939
spellingShingle Mathematics
QA1-939
Bielawski Roger
Slices to sums of adjoint orbits, the Atiyah-Hitchin manifold, and Hilbert schemes of points
description We show that the regular Slodowy slice to the sum of two semisimple adjoint orbits of GL(n, ℂ) is isomorphic to the deformation of the D2-singularity if n = 2, the Dancer deformation of the double cover of the Atiyah-Hitchin manifold if n = 3, and to the Atiyah-Hitchin manifold itself if n = 4. For higher n, such slices to the sum of two orbits, each having only two distinct eigenvalues, are either empty or biholomorphic to open subsets of the Hilbert scheme of points on one of the above surfaces. In particular, these open subsets of Hilbert schemes of points carry complete hyperkähler metrics. In the case of the double cover of the Atiyah-Hitchin manifold this metric turns out to be the natural L2-metric on a hyperkähler submanifold of the monopole moduli space.
format article
author Bielawski Roger
author_facet Bielawski Roger
author_sort Bielawski Roger
title Slices to sums of adjoint orbits, the Atiyah-Hitchin manifold, and Hilbert schemes of points
title_short Slices to sums of adjoint orbits, the Atiyah-Hitchin manifold, and Hilbert schemes of points
title_full Slices to sums of adjoint orbits, the Atiyah-Hitchin manifold, and Hilbert schemes of points
title_fullStr Slices to sums of adjoint orbits, the Atiyah-Hitchin manifold, and Hilbert schemes of points
title_full_unstemmed Slices to sums of adjoint orbits, the Atiyah-Hitchin manifold, and Hilbert schemes of points
title_sort slices to sums of adjoint orbits, the atiyah-hitchin manifold, and hilbert schemes of points
publisher De Gruyter
publishDate 2017
url https://doaj.org/article/7534528826304ae88b8fc1b8cfacd4bd
work_keys_str_mv AT bielawskiroger slicestosumsofadjointorbitstheatiyahhitchinmanifoldandhilbertschemesofpoints
_version_ 1718381265507319808