Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
Abstract Histopathological diagnosis of lymphomas represents a challenge requiring either expertise or centralised review, and greatly depends on the technical process of tissue sections. Hence, we developed an innovative deep-learning framework, empowered with a certainty estimation level, designed...
Guardado en:
Autores principales: | Charlotte Syrykh, Arnaud Abreu, Nadia Amara, Aurore Siegfried, Véronique Maisongrosse, François X. Frenois, Laurent Martin, Cédric Rossi, Camille Laurent, Pierre Brousset |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7538dbd0eeaf410ea2c52f6970ce89a3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient cellular annotation of histopathology slides with real-time AI augmentation
por: James A. Diao, et al.
Publicado: (2021) -
Deep learning-based histopathological segmentation for whole slide images of colorectal cancer in a compressed domain
por: Hyeongsub Kim, et al.
Publicado: (2021) -
Gene Expression Signature Associated with Clinical Outcome in ALK-Positive Anaplastic Large Cell Lymphoma
por: Daugrois Camille, et al.
Publicado: (2021) -
Automated Diagnosis and Localization of Melanoma from Skin Histopathology Slides Using Deep Learning: A Multicenter Study
por: Tao Li, et al.
Publicado: (2021) -
Histopathology
Publicado: (1977)