Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
Abstract Histopathological diagnosis of lymphomas represents a challenge requiring either expertise or centralised review, and greatly depends on the technical process of tissue sections. Hence, we developed an innovative deep-learning framework, empowered with a certainty estimation level, designed...
Enregistré dans:
Auteurs principaux: | Charlotte Syrykh, Arnaud Abreu, Nadia Amara, Aurore Siegfried, Véronique Maisongrosse, François X. Frenois, Laurent Martin, Cédric Rossi, Camille Laurent, Pierre Brousset |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7538dbd0eeaf410ea2c52f6970ce89a3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Efficient cellular annotation of histopathology slides with real-time AI augmentation
par: James A. Diao, et autres
Publié: (2021) -
Deep learning-based histopathological segmentation for whole slide images of colorectal cancer in a compressed domain
par: Hyeongsub Kim, et autres
Publié: (2021) -
Gene Expression Signature Associated with Clinical Outcome in ALK-Positive Anaplastic Large Cell Lymphoma
par: Daugrois Camille, et autres
Publié: (2021) -
Automated Diagnosis and Localization of Melanoma from Skin Histopathology Slides Using Deep Learning: A Multicenter Study
par: Tao Li, et autres
Publié: (2021) -
Histopathology
Publié: (1977)