Machine learning method for quick identification of water quality index (WQI) based on Sentinel-2 MSI data: Ebinur Lake case study
Surface water quality is an important factor affecting the ecological environment and human living environment. The monitoring of surface water quality by remote sensing monitoring technology can provide important research significance for water resources protection and water quality evaluation. Fin...
Guardado en:
Autores principales: | Xiaohang Li, Jianli Ding, Nurmemet Ilyas |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7561cf7bc6854a34a8a0fca968e22c3b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Water Quality Index (WQI) as a Potential Proxy for Remote Sensing Evaluation of Water Quality in Arid Areas
por: Fei Zhang, et al.
Publicado: (2021) -
Remotely observed variations of reservoir low concentration chromophoric dissolved organic matter and its response to upstream hydrological and meteorological conditions using Sentinel-2 imagery and Gradient Boosting Regression Tree
por: Zeliang Zhang, et al.
Publicado: (2021) -
Remote-sensing-based algorithms for water quality monitoring in Olushandja Dam, north-central Namibia
por: Taimi S. Kapalanga, et al.
Publicado: (2021) -
Machine learning techniques in river water quality modelling: a research travelogue
por: Sakshi Khullar, et al.
Publicado: (2021) -
Evaluation of surface water quality using water quality indices (WQIs) in Lake Sukhna, Chandigarh, India
por: Maansi, et al.
Publicado: (2021)