An Arrow-Curve Path Planning Model for Mobile Beacon Node Aided Localization in Air Pollution Monitoring System IoT
In wireless sensor networks, it is crucial to support the collected data of sensor nodes with position information. One of the promising ways to acquire the position of unknown nodes is using a mobile anchor node that traverses throughout the network, stops at determined points, and sends its positi...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7567406ee06e495a8dd7ba28e22e23e4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In wireless sensor networks, it is crucial to support the collected data of sensor nodes with position information. One of the promising ways to acquire the position of unknown nodes is using a mobile anchor node that traverses throughout the network, stops at determined points, and sends its position to aid in obtaining the location of other unknown nodes. The main challenge in using mobile anchor nodes lies in designing the path model with the highest localization accuracy, shortest path length, full coverage area, and minimal power consumption. In this paper, a path model named the Arrow-Curve path model is proposed for mobile node aided localization. The proposed path model can effectively localize all the static unknown sensor positions in the network field with high positioning accuracy and low power consumption while pledging full coverage area. The sensor network is implemented using MATLAB simulation and MCU node in both static unknown nodes and the mobile anchor node. The realtime environment guarantees a realistic environmental model with reliable results. The path model is implemented in realtime in indoor and outdoor environments and compared to the H-Curve path model using a trilateration technique. The results show that the suggested path model achieves better results compared to H-Curve model. The proposed path model achieves an average position error less than that of H-Curve by 10.6% in a simulation environment, 5% in an outdoor realtime environment, and 9% in an indoor realtime environment, and it decreases power consumption by 62.65% in the simulation environment, 50% in the outdoor realtime environment, and 75% in the realtime environment in indoor compared to H-Curve. |
---|