Transition prediction in the Ising-model

Dynamical systems can be subject to critical transitions where a system’s state abruptly shifts from one stable equilibrium to another. To a certain extent such transitions can be predicted with a set of methods known as early warning signals. These methods are often developed and tested on systems...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Manfred Füllsack, Daniel Reisinger
Format: article
Langue:EN
Publié: Public Library of Science (PLoS) 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/7571bde4d9e5411cbf25aaf1f638b05c
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Dynamical systems can be subject to critical transitions where a system’s state abruptly shifts from one stable equilibrium to another. To a certain extent such transitions can be predicted with a set of methods known as early warning signals. These methods are often developed and tested on systems simulated with equation-based approaches that focus on the aggregate dynamics of a system. Many ecological phenomena however seem to necessitate the consideration of a system’s micro-level interactions since only there the actual reasons for sudden state transitions become apparent. Agent-based approaches that simulate systems from the bottom up by explicitly focusing on these micro-level interactions have only rarely been used in such investigations. This study compares the performance of a bifurcation estimation method for predicting state transitions when applied to data from an equation-based and an agent-based version of the Ising-model. The results show that the method can be applied to agent-based models and, despite its greater stochasticity, can provide useful predictions about state changes in complex systems.