Enzymatically-crosslinked gelatin hydrogels containing paenipeptin and clarithromycin against carbapenem-resistant pathogen in murine skin wound infection
Abstract Background The recent rise and spread of carbapenem-resistant pathogens pose an urgent threat to public health and has fueled the search for new therapies. Localized delivery of topical antibiotics is an alternative for the treatment of infected wounds caused by drug-resistant pathogens. In...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/758f23ed699546a687f8130baee2590e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:758f23ed699546a687f8130baee2590e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:758f23ed699546a687f8130baee2590e2021-11-28T12:07:07ZEnzymatically-crosslinked gelatin hydrogels containing paenipeptin and clarithromycin against carbapenem-resistant pathogen in murine skin wound infection10.1186/s12866-021-02383-z1471-2180https://doaj.org/article/758f23ed699546a687f8130baee2590e2021-11-01T00:00:00Zhttps://doi.org/10.1186/s12866-021-02383-zhttps://doaj.org/toc/1471-2180Abstract Background The recent rise and spread of carbapenem-resistant pathogens pose an urgent threat to public health and has fueled the search for new therapies. Localized delivery of topical antibiotics is an alternative for the treatment of infected wounds caused by drug-resistant pathogens. In this study, we aimed to develop antimicrobial-loaded hydrogels for topical treatment of wound infections in a murine skin wound infection. Results Paenipeptin analogue 1, a linear lipopeptide, potentiated clarithromycin against multidrug-resistant Acinetobacter baumannii, Enterobacter cloacae, Escherichia coli, and Klebsiella pneumoniae. Enzymatically-crosslinked gelatin hydrogels were developed to encapsulate paenipeptin analogue 1 and clarithromycin. The encapsulated antimicrobials were gradually released from hydrogels during incubation, reaching 75.43 and 53.66% for paenipeptin and clarithromycin, respectively, at 24 h. The antimicrobial-loaded hydrogels containing paenipeptin and clarithromycin synergistically resulted in 5-log reduction in carbapenem-resistant A. baumannii within 6 h in vitro. Moreover, the antimicrobial-loaded hydrogels reduced 3.6- and 2.5-log of carbapenem-resistant A. baumannii when treated at 4 or 20 h post infection, respectively, in a murine skin wound infection. Conclusions Enzymatically-crosslinked gelatin hydrogels loaded with paenipeptin analogue 1 and clarithromycin exhibited potent therapeutic efficacy against carbapenem-resistant A. baumannii in murine skin wound infection.Sun Hee MoonYihong KaufmannRyoichi FujiwaraEn HuangBMCarticleCarbapenem-resistanceWound infectionPaenipeptinClarithromycinHydrogelMicrobiologyQR1-502ENBMC Microbiology, Vol 21, Iss 1, Pp 1-7 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Carbapenem-resistance Wound infection Paenipeptin Clarithromycin Hydrogel Microbiology QR1-502 |
spellingShingle |
Carbapenem-resistance Wound infection Paenipeptin Clarithromycin Hydrogel Microbiology QR1-502 Sun Hee Moon Yihong Kaufmann Ryoichi Fujiwara En Huang Enzymatically-crosslinked gelatin hydrogels containing paenipeptin and clarithromycin against carbapenem-resistant pathogen in murine skin wound infection |
description |
Abstract Background The recent rise and spread of carbapenem-resistant pathogens pose an urgent threat to public health and has fueled the search for new therapies. Localized delivery of topical antibiotics is an alternative for the treatment of infected wounds caused by drug-resistant pathogens. In this study, we aimed to develop antimicrobial-loaded hydrogels for topical treatment of wound infections in a murine skin wound infection. Results Paenipeptin analogue 1, a linear lipopeptide, potentiated clarithromycin against multidrug-resistant Acinetobacter baumannii, Enterobacter cloacae, Escherichia coli, and Klebsiella pneumoniae. Enzymatically-crosslinked gelatin hydrogels were developed to encapsulate paenipeptin analogue 1 and clarithromycin. The encapsulated antimicrobials were gradually released from hydrogels during incubation, reaching 75.43 and 53.66% for paenipeptin and clarithromycin, respectively, at 24 h. The antimicrobial-loaded hydrogels containing paenipeptin and clarithromycin synergistically resulted in 5-log reduction in carbapenem-resistant A. baumannii within 6 h in vitro. Moreover, the antimicrobial-loaded hydrogels reduced 3.6- and 2.5-log of carbapenem-resistant A. baumannii when treated at 4 or 20 h post infection, respectively, in a murine skin wound infection. Conclusions Enzymatically-crosslinked gelatin hydrogels loaded with paenipeptin analogue 1 and clarithromycin exhibited potent therapeutic efficacy against carbapenem-resistant A. baumannii in murine skin wound infection. |
format |
article |
author |
Sun Hee Moon Yihong Kaufmann Ryoichi Fujiwara En Huang |
author_facet |
Sun Hee Moon Yihong Kaufmann Ryoichi Fujiwara En Huang |
author_sort |
Sun Hee Moon |
title |
Enzymatically-crosslinked gelatin hydrogels containing paenipeptin and clarithromycin against carbapenem-resistant pathogen in murine skin wound infection |
title_short |
Enzymatically-crosslinked gelatin hydrogels containing paenipeptin and clarithromycin against carbapenem-resistant pathogen in murine skin wound infection |
title_full |
Enzymatically-crosslinked gelatin hydrogels containing paenipeptin and clarithromycin against carbapenem-resistant pathogen in murine skin wound infection |
title_fullStr |
Enzymatically-crosslinked gelatin hydrogels containing paenipeptin and clarithromycin against carbapenem-resistant pathogen in murine skin wound infection |
title_full_unstemmed |
Enzymatically-crosslinked gelatin hydrogels containing paenipeptin and clarithromycin against carbapenem-resistant pathogen in murine skin wound infection |
title_sort |
enzymatically-crosslinked gelatin hydrogels containing paenipeptin and clarithromycin against carbapenem-resistant pathogen in murine skin wound infection |
publisher |
BMC |
publishDate |
2021 |
url |
https://doaj.org/article/758f23ed699546a687f8130baee2590e |
work_keys_str_mv |
AT sunheemoon enzymaticallycrosslinkedgelatinhydrogelscontainingpaenipeptinandclarithromycinagainstcarbapenemresistantpathogeninmurineskinwoundinfection AT yihongkaufmann enzymaticallycrosslinkedgelatinhydrogelscontainingpaenipeptinandclarithromycinagainstcarbapenemresistantpathogeninmurineskinwoundinfection AT ryoichifujiwara enzymaticallycrosslinkedgelatinhydrogelscontainingpaenipeptinandclarithromycinagainstcarbapenemresistantpathogeninmurineskinwoundinfection AT enhuang enzymaticallycrosslinkedgelatinhydrogelscontainingpaenipeptinandclarithromycinagainstcarbapenemresistantpathogeninmurineskinwoundinfection |
_version_ |
1718408204775325696 |