ANFIS-Net for automatic detection of COVID-19
Abstract Among the most leading causes of mortality across the globe are infectious diseases which have cost tremendous lives with the latest being coronavirus (COVID-19) that has become the most recent challenging issue. The extreme nature of this infectious virus and its ability to spread without...
Guardado en:
Autores principales: | Afnan Al-ali, Omar Elharrouss, Uvais Qidwai, Somaya Al-Maaddeed |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7595cc9edd0f41a5af78727b6896fb18 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
GraphCovidNet: A graph neural network based model for detecting COVID-19 from CT scans and X-rays of chest
por: Pritam Saha, et al.
Publicado: (2021) -
Automatic Detection and Counting of Blood Cells in Smear Images Using RetinaNet
por: Grzegorz Drałus, et al.
Publicado: (2021) -
Limiting COVID-19 infection by automatic remote face mask monitoring and detection using deep learning with IoT
por: Omar Mowaffak Alsaydia, et al.
Publicado: (2021) -
EpistoNet: an ensemble of Epistocracy-optimized mixture of experts for detecting COVID-19 on chest X-ray images
por: Seyed Ziae Mousavi Mojab, et al.
Publicado: (2021) -
Retraction Note: GraphCovidNet: A graph neural network based model for detecting COVID-19 from CT scans and X-rays of chest
por: Pritam Saha, et al.
Publicado: (2021)