Reconstruction and validation of RefRec: a global model for the yeast molecular interaction network.

Molecular interaction networks establish all cell biological processes. The networks are under intensive research that is facilitated by new high-throughput measurement techniques for the detection, quantification, and characterization of molecules and their physical interactions. For the common mod...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tommi Aho, Henrikki Almusa, Jukka Matilainen, Antti Larjo, Pekka Ruusuvuori, Kaisa-Leena Aho, Thomas Wilhelm, Harri Lähdesmäki, Andreas Beyer, Manu Harju, Sharif Chowdhury, Kalle Leinonen, Christophe Roos, Olli Yli-Harja
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2010
Materias:
R
Q
Acceso en línea:https://doaj.org/article/759d8216aad647a3b8104cef25ea78c0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:759d8216aad647a3b8104cef25ea78c0
record_format dspace
spelling oai:doaj.org-article:759d8216aad647a3b8104cef25ea78c02021-12-02T20:21:39ZReconstruction and validation of RefRec: a global model for the yeast molecular interaction network.1932-620310.1371/journal.pone.0010662https://doaj.org/article/759d8216aad647a3b8104cef25ea78c02010-05-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/20498836/?tool=EBIhttps://doaj.org/toc/1932-6203Molecular interaction networks establish all cell biological processes. The networks are under intensive research that is facilitated by new high-throughput measurement techniques for the detection, quantification, and characterization of molecules and their physical interactions. For the common model organism yeast Saccharomyces cerevisiae, public databases store a significant part of the accumulated information and, on the way to better understanding of the cellular processes, there is a need to integrate this information into a consistent reconstruction of the molecular interaction network. This work presents and validates RefRec, the most comprehensive molecular interaction network reconstruction currently available for yeast. The reconstruction integrates protein synthesis pathways, a metabolic network, and a protein-protein interaction network from major biological databases. The core of the reconstruction is based on a reference object approach in which genes, transcripts, and proteins are identified using their primary sequences. This enables their unambiguous identification and non-redundant integration. The obtained total number of different molecular species and their connecting interactions is approximately 67,000. In order to demonstrate the capacity of RefRec for functional predictions, it was used for simulating the gene knockout damage propagation in the molecular interaction network in approximately 590,000 experimentally validated mutant strains. Based on the simulation results, a statistical classifier was subsequently able to correctly predict the viability of most of the strains. The results also showed that the usage of different types of molecular species in the reconstruction is important for accurate phenotype prediction. In general, the findings demonstrate the benefits of global reconstructions of molecular interaction networks. With all the molecular species and their physical interactions explicitly modeled, our reconstruction is able to serve as a valuable resource in additional analyses involving objects from multiple molecular -omes. For that purpose, RefRec is freely available in the Systems Biology Markup Language format.Tommi AhoHenrikki AlmusaJukka MatilainenAntti LarjoPekka RuusuvuoriKaisa-Leena AhoThomas WilhelmHarri LähdesmäkiAndreas BeyerManu HarjuSharif ChowdhuryKalle LeinonenChristophe RoosOlli Yli-HarjaPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 5, Iss 5, p e10662 (2010)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Tommi Aho
Henrikki Almusa
Jukka Matilainen
Antti Larjo
Pekka Ruusuvuori
Kaisa-Leena Aho
Thomas Wilhelm
Harri Lähdesmäki
Andreas Beyer
Manu Harju
Sharif Chowdhury
Kalle Leinonen
Christophe Roos
Olli Yli-Harja
Reconstruction and validation of RefRec: a global model for the yeast molecular interaction network.
description Molecular interaction networks establish all cell biological processes. The networks are under intensive research that is facilitated by new high-throughput measurement techniques for the detection, quantification, and characterization of molecules and their physical interactions. For the common model organism yeast Saccharomyces cerevisiae, public databases store a significant part of the accumulated information and, on the way to better understanding of the cellular processes, there is a need to integrate this information into a consistent reconstruction of the molecular interaction network. This work presents and validates RefRec, the most comprehensive molecular interaction network reconstruction currently available for yeast. The reconstruction integrates protein synthesis pathways, a metabolic network, and a protein-protein interaction network from major biological databases. The core of the reconstruction is based on a reference object approach in which genes, transcripts, and proteins are identified using their primary sequences. This enables their unambiguous identification and non-redundant integration. The obtained total number of different molecular species and their connecting interactions is approximately 67,000. In order to demonstrate the capacity of RefRec for functional predictions, it was used for simulating the gene knockout damage propagation in the molecular interaction network in approximately 590,000 experimentally validated mutant strains. Based on the simulation results, a statistical classifier was subsequently able to correctly predict the viability of most of the strains. The results also showed that the usage of different types of molecular species in the reconstruction is important for accurate phenotype prediction. In general, the findings demonstrate the benefits of global reconstructions of molecular interaction networks. With all the molecular species and their physical interactions explicitly modeled, our reconstruction is able to serve as a valuable resource in additional analyses involving objects from multiple molecular -omes. For that purpose, RefRec is freely available in the Systems Biology Markup Language format.
format article
author Tommi Aho
Henrikki Almusa
Jukka Matilainen
Antti Larjo
Pekka Ruusuvuori
Kaisa-Leena Aho
Thomas Wilhelm
Harri Lähdesmäki
Andreas Beyer
Manu Harju
Sharif Chowdhury
Kalle Leinonen
Christophe Roos
Olli Yli-Harja
author_facet Tommi Aho
Henrikki Almusa
Jukka Matilainen
Antti Larjo
Pekka Ruusuvuori
Kaisa-Leena Aho
Thomas Wilhelm
Harri Lähdesmäki
Andreas Beyer
Manu Harju
Sharif Chowdhury
Kalle Leinonen
Christophe Roos
Olli Yli-Harja
author_sort Tommi Aho
title Reconstruction and validation of RefRec: a global model for the yeast molecular interaction network.
title_short Reconstruction and validation of RefRec: a global model for the yeast molecular interaction network.
title_full Reconstruction and validation of RefRec: a global model for the yeast molecular interaction network.
title_fullStr Reconstruction and validation of RefRec: a global model for the yeast molecular interaction network.
title_full_unstemmed Reconstruction and validation of RefRec: a global model for the yeast molecular interaction network.
title_sort reconstruction and validation of refrec: a global model for the yeast molecular interaction network.
publisher Public Library of Science (PLoS)
publishDate 2010
url https://doaj.org/article/759d8216aad647a3b8104cef25ea78c0
work_keys_str_mv AT tommiaho reconstructionandvalidationofrefrecaglobalmodelfortheyeastmolecularinteractionnetwork
AT henrikkialmusa reconstructionandvalidationofrefrecaglobalmodelfortheyeastmolecularinteractionnetwork
AT jukkamatilainen reconstructionandvalidationofrefrecaglobalmodelfortheyeastmolecularinteractionnetwork
AT anttilarjo reconstructionandvalidationofrefrecaglobalmodelfortheyeastmolecularinteractionnetwork
AT pekkaruusuvuori reconstructionandvalidationofrefrecaglobalmodelfortheyeastmolecularinteractionnetwork
AT kaisaleenaaho reconstructionandvalidationofrefrecaglobalmodelfortheyeastmolecularinteractionnetwork
AT thomaswilhelm reconstructionandvalidationofrefrecaglobalmodelfortheyeastmolecularinteractionnetwork
AT harrilahdesmaki reconstructionandvalidationofrefrecaglobalmodelfortheyeastmolecularinteractionnetwork
AT andreasbeyer reconstructionandvalidationofrefrecaglobalmodelfortheyeastmolecularinteractionnetwork
AT manuharju reconstructionandvalidationofrefrecaglobalmodelfortheyeastmolecularinteractionnetwork
AT sharifchowdhury reconstructionandvalidationofrefrecaglobalmodelfortheyeastmolecularinteractionnetwork
AT kalleleinonen reconstructionandvalidationofrefrecaglobalmodelfortheyeastmolecularinteractionnetwork
AT christopheroos reconstructionandvalidationofrefrecaglobalmodelfortheyeastmolecularinteractionnetwork
AT olliyliharja reconstructionandvalidationofrefrecaglobalmodelfortheyeastmolecularinteractionnetwork
_version_ 1718374114365800448