A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues

Abstract Cardiotoxicity of pharmaceutical drugs, industrial chemicals, and environmental toxicants can be severe, even life threatening, which necessitates a thorough evaluation of the human response to chemical compounds. Predicting risks for arrhythmia and sudden cardiac death accurately is critic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Celinda M. Kofron, Tae Yun Kim, Fabiola Munarin, Arvin H. Soepriatna, Rajeev J. Kant, Ulrike Mende, Bum-Rak Choi, Kareen L. K. Coulombe
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/75b6c068a5ce412c8a3e790024a14557
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:75b6c068a5ce412c8a3e790024a14557
record_format dspace
spelling oai:doaj.org-article:75b6c068a5ce412c8a3e790024a145572021-12-02T16:50:31ZA predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues10.1038/s41598-021-89478-92045-2322https://doaj.org/article/75b6c068a5ce412c8a3e790024a145572021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-89478-9https://doaj.org/toc/2045-2322Abstract Cardiotoxicity of pharmaceutical drugs, industrial chemicals, and environmental toxicants can be severe, even life threatening, which necessitates a thorough evaluation of the human response to chemical compounds. Predicting risks for arrhythmia and sudden cardiac death accurately is critical for defining safety profiles. Currently available approaches have limitations including a focus on single select ion channels, the use of non-human species in vitro and in vivo, and limited direct physiological translation. We have advanced the robustness and reproducibility of in vitro platforms for assessing pro-arrhythmic cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts in 3-dimensional microtissues. Using automated algorithms and statistical analyses of eight comprehensive evaluation metrics of cardiac action potentials, we demonstrate that tissue-engineered human cardiac microtissues respond appropriately to physiological stimuli and effectively differentiate between high-risk and low-risk compounds exhibiting blockade of the hERG channel (E4031 and ranolazine, respectively). Further, we show that the environmental endocrine disrupting chemical bisphenol-A (BPA) causes acute and sensitive disruption of human action potentials in the nanomolar range. Thus, this novel human 3D in vitro pro-arrhythmic risk assessment platform addresses critical needs in cardiotoxicity testing for both environmental and pharmaceutical compounds and can be leveraged to establish safe human exposure levels.Celinda M. KofronTae Yun KimFabiola MunarinArvin H. SoepriatnaRajeev J. KantUlrike MendeBum-Rak ChoiKareen L. K. CoulombeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-16 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Celinda M. Kofron
Tae Yun Kim
Fabiola Munarin
Arvin H. Soepriatna
Rajeev J. Kant
Ulrike Mende
Bum-Rak Choi
Kareen L. K. Coulombe
A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues
description Abstract Cardiotoxicity of pharmaceutical drugs, industrial chemicals, and environmental toxicants can be severe, even life threatening, which necessitates a thorough evaluation of the human response to chemical compounds. Predicting risks for arrhythmia and sudden cardiac death accurately is critical for defining safety profiles. Currently available approaches have limitations including a focus on single select ion channels, the use of non-human species in vitro and in vivo, and limited direct physiological translation. We have advanced the robustness and reproducibility of in vitro platforms for assessing pro-arrhythmic cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts in 3-dimensional microtissues. Using automated algorithms and statistical analyses of eight comprehensive evaluation metrics of cardiac action potentials, we demonstrate that tissue-engineered human cardiac microtissues respond appropriately to physiological stimuli and effectively differentiate between high-risk and low-risk compounds exhibiting blockade of the hERG channel (E4031 and ranolazine, respectively). Further, we show that the environmental endocrine disrupting chemical bisphenol-A (BPA) causes acute and sensitive disruption of human action potentials in the nanomolar range. Thus, this novel human 3D in vitro pro-arrhythmic risk assessment platform addresses critical needs in cardiotoxicity testing for both environmental and pharmaceutical compounds and can be leveraged to establish safe human exposure levels.
format article
author Celinda M. Kofron
Tae Yun Kim
Fabiola Munarin
Arvin H. Soepriatna
Rajeev J. Kant
Ulrike Mende
Bum-Rak Choi
Kareen L. K. Coulombe
author_facet Celinda M. Kofron
Tae Yun Kim
Fabiola Munarin
Arvin H. Soepriatna
Rajeev J. Kant
Ulrike Mende
Bum-Rak Choi
Kareen L. K. Coulombe
author_sort Celinda M. Kofron
title A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues
title_short A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues
title_full A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues
title_fullStr A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues
title_full_unstemmed A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues
title_sort predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3d cardiac microtissues
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/75b6c068a5ce412c8a3e790024a14557
work_keys_str_mv AT celindamkofron apredictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
AT taeyunkim apredictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
AT fabiolamunarin apredictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
AT arvinhsoepriatna apredictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
AT rajeevjkant apredictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
AT ulrikemende apredictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
AT bumrakchoi apredictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
AT kareenlkcoulombe apredictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
AT celindamkofron predictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
AT taeyunkim predictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
AT fabiolamunarin predictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
AT arvinhsoepriatna predictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
AT rajeevjkant predictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
AT ulrikemende predictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
AT bumrakchoi predictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
AT kareenlkcoulombe predictiveinvitroriskassessmentplatformforproarrhythmictoxicityusinghuman3dcardiacmicrotissues
_version_ 1718383045893947392