Depression predictions from GPS-based mobility do not generalize well to large demographically heterogeneous samples
Abstract Depression is one of the most common mental health issues in the United States, affecting the lives of millions of people suffering from it as well as those close to them. Recent advances in research on mobile sensing technologies and machine learning have suggested that a person’s depressi...
Enregistré dans:
Auteurs principaux: | Sandrine R. Müller, Xi (Leslie) Chen, Heinrich Peters, Augustin Chaintreau, Sandra C. Matz |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/75c285a293e64182af3c754c20fef62e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Mapping urban greenspace use from mobile phone GPS data.
par: Meghann Mears, et autres
Publié: (2021) -
Sensitivity to food and cocaine cues are independent traits in a large sample of heterogeneous stock rats
par: Christopher P. King, et autres
Publié: (2021) -
Brain structural associations with depression in a large early adolescent sample (the ABCD study®)
par: Xueyi Shen, et autres
Publié: (2021) -
GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm.
par: Yu Xue, et autres
Publié: (2010) -
GPS tracking data can document wind turbine interactions: Evidence from a GPS-tagged Eurasian curlew
par: Frédéric Jiguet, et autres
Publié: (2021)