Radial growth of the derivatives of analytic functions in Besov spaces

For 1 < p < ∞, the Besov space Bp consists of those functions f which are analytic in the unit disc 𝔻 = {z ∈ 𝔺 : |z| < 1} and satisfy ∫𝔻(1 − |z|2)p−2|f ′(z)|p dA(z) < ∞. The space B2 reduces to the classical Dirichlet space 𝒟. It is known that if f ∈ 𝒟then |f ′(reiθ)| = o[(1 − r)−1/2], f...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Domínguez Salvador, Girela Daniel
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2020
Materias:
Acceso en línea:https://doaj.org/article/75d4de55695544a1bbfe4268f57ac0cf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:75d4de55695544a1bbfe4268f57ac0cf
record_format dspace
spelling oai:doaj.org-article:75d4de55695544a1bbfe4268f57ac0cf2021-12-05T14:10:45ZRadial growth of the derivatives of analytic functions in Besov spaces2299-328210.1515/conop-2020-0107https://doaj.org/article/75d4de55695544a1bbfe4268f57ac0cf2020-12-01T00:00:00Zhttps://doi.org/10.1515/conop-2020-0107https://doaj.org/toc/2299-3282For 1 < p < ∞, the Besov space Bp consists of those functions f which are analytic in the unit disc 𝔻 = {z ∈ 𝔺 : |z| < 1} and satisfy ∫𝔻(1 − |z|2)p−2|f ′(z)|p dA(z) < ∞. The space B2 reduces to the classical Dirichlet space 𝒟. It is known that if f ∈ 𝒟then |f ′(reiθ)| = o[(1 − r)−1/2], for almost every ∈ [0, 2π]. Hallenbeck and Samotij proved that this result is sharp in a very strong sense. We obtain substitutes of the above results valid for the spaces Bp (1 < p < ∞) an we give also an application of our them to questions concerning multipliers between Besov spaces.Domínguez SalvadorGirela DanielDe Gruyterarticlebesov spacesradial behaviourmultipliers30h2547b38MathematicsQA1-939ENConcrete Operators, Vol 8, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic besov spaces
radial behaviour
multipliers
30h25
47b38
Mathematics
QA1-939
spellingShingle besov spaces
radial behaviour
multipliers
30h25
47b38
Mathematics
QA1-939
Domínguez Salvador
Girela Daniel
Radial growth of the derivatives of analytic functions in Besov spaces
description For 1 < p < ∞, the Besov space Bp consists of those functions f which are analytic in the unit disc 𝔻 = {z ∈ 𝔺 : |z| < 1} and satisfy ∫𝔻(1 − |z|2)p−2|f ′(z)|p dA(z) < ∞. The space B2 reduces to the classical Dirichlet space 𝒟. It is known that if f ∈ 𝒟then |f ′(reiθ)| = o[(1 − r)−1/2], for almost every ∈ [0, 2π]. Hallenbeck and Samotij proved that this result is sharp in a very strong sense. We obtain substitutes of the above results valid for the spaces Bp (1 < p < ∞) an we give also an application of our them to questions concerning multipliers between Besov spaces.
format article
author Domínguez Salvador
Girela Daniel
author_facet Domínguez Salvador
Girela Daniel
author_sort Domínguez Salvador
title Radial growth of the derivatives of analytic functions in Besov spaces
title_short Radial growth of the derivatives of analytic functions in Besov spaces
title_full Radial growth of the derivatives of analytic functions in Besov spaces
title_fullStr Radial growth of the derivatives of analytic functions in Besov spaces
title_full_unstemmed Radial growth of the derivatives of analytic functions in Besov spaces
title_sort radial growth of the derivatives of analytic functions in besov spaces
publisher De Gruyter
publishDate 2020
url https://doaj.org/article/75d4de55695544a1bbfe4268f57ac0cf
work_keys_str_mv AT dominguezsalvador radialgrowthofthederivativesofanalyticfunctionsinbesovspaces
AT gireladaniel radialgrowthofthederivativesofanalyticfunctionsinbesovspaces
_version_ 1718371764093845504