Radial growth of the derivatives of analytic functions in Besov spaces
For 1 < p < ∞, the Besov space Bp consists of those functions f which are analytic in the unit disc 𝔻 = {z ∈ : |z| < 1} and satisfy ∫𝔻(1 − |z|2)p−2|f ′(z)|p dA(z) < ∞. The space B2 reduces to the classical Dirichlet space 𝒟. It is known that if f ∈ 𝒟then |f ′(reiθ)| = o[(1 − r)−1/2], f...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/75d4de55695544a1bbfe4268f57ac0cf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:75d4de55695544a1bbfe4268f57ac0cf |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:75d4de55695544a1bbfe4268f57ac0cf2021-12-05T14:10:45ZRadial growth of the derivatives of analytic functions in Besov spaces2299-328210.1515/conop-2020-0107https://doaj.org/article/75d4de55695544a1bbfe4268f57ac0cf2020-12-01T00:00:00Zhttps://doi.org/10.1515/conop-2020-0107https://doaj.org/toc/2299-3282For 1 < p < ∞, the Besov space Bp consists of those functions f which are analytic in the unit disc 𝔻 = {z ∈ : |z| < 1} and satisfy ∫𝔻(1 − |z|2)p−2|f ′(z)|p dA(z) < ∞. The space B2 reduces to the classical Dirichlet space 𝒟. It is known that if f ∈ 𝒟then |f ′(reiθ)| = o[(1 − r)−1/2], for almost every ∈ [0, 2π]. Hallenbeck and Samotij proved that this result is sharp in a very strong sense. We obtain substitutes of the above results valid for the spaces Bp (1 < p < ∞) an we give also an application of our them to questions concerning multipliers between Besov spaces.Domínguez SalvadorGirela DanielDe Gruyterarticlebesov spacesradial behaviourmultipliers30h2547b38MathematicsQA1-939ENConcrete Operators, Vol 8, Iss 1, Pp 1-12 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
besov spaces radial behaviour multipliers 30h25 47b38 Mathematics QA1-939 |
spellingShingle |
besov spaces radial behaviour multipliers 30h25 47b38 Mathematics QA1-939 Domínguez Salvador Girela Daniel Radial growth of the derivatives of analytic functions in Besov spaces |
description |
For 1 < p < ∞, the Besov space Bp consists of those functions f which are analytic in the unit disc 𝔻 = {z ∈ : |z| < 1} and satisfy ∫𝔻(1 − |z|2)p−2|f ′(z)|p dA(z) < ∞. The space B2 reduces to the classical Dirichlet space 𝒟. It is known that if f ∈ 𝒟then |f ′(reiθ)| = o[(1 − r)−1/2], for almost every ∈ [0, 2π]. Hallenbeck and Samotij proved that this result is sharp in a very strong sense. We obtain substitutes of the above results valid for the spaces Bp (1 < p < ∞) an we give also an application of our them to questions concerning multipliers between Besov spaces. |
format |
article |
author |
Domínguez Salvador Girela Daniel |
author_facet |
Domínguez Salvador Girela Daniel |
author_sort |
Domínguez Salvador |
title |
Radial growth of the derivatives of analytic functions in Besov spaces |
title_short |
Radial growth of the derivatives of analytic functions in Besov spaces |
title_full |
Radial growth of the derivatives of analytic functions in Besov spaces |
title_fullStr |
Radial growth of the derivatives of analytic functions in Besov spaces |
title_full_unstemmed |
Radial growth of the derivatives of analytic functions in Besov spaces |
title_sort |
radial growth of the derivatives of analytic functions in besov spaces |
publisher |
De Gruyter |
publishDate |
2020 |
url |
https://doaj.org/article/75d4de55695544a1bbfe4268f57ac0cf |
work_keys_str_mv |
AT dominguezsalvador radialgrowthofthederivativesofanalyticfunctionsinbesovspaces AT gireladaniel radialgrowthofthederivativesofanalyticfunctionsinbesovspaces |
_version_ |
1718371764093845504 |