Radial growth of the derivatives of analytic functions in Besov spaces
For 1 < p < ∞, the Besov space Bp consists of those functions f which are analytic in the unit disc 𝔻 = {z ∈ : |z| < 1} and satisfy ∫𝔻(1 − |z|2)p−2|f ′(z)|p dA(z) < ∞. The space B2 reduces to the classical Dirichlet space 𝒟. It is known that if f ∈ 𝒟then |f ′(reiθ)| = o[(1 − r)−1/2], f...
Guardado en:
Autores principales: | Domínguez Salvador, Girela Daniel |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/75d4de55695544a1bbfe4268f57ac0cf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Logarithmically improved regularity criteria for the Navier-Stokes equations in homogeneous Besov spaces
por: Nguyen Anh Dao, et al.
Publicado: (2021) -
Lebesgue Points of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness
por: Ziwei Li, et al.
Publicado: (2021) -
Homogeneous Besov Spaces associated with the spherical mean operator
por: Rachdi,L.T, et al.
Publicado: (2011) -
Variation inequalities for rough singular integrals and their commutators on Morrey spaces and Besov spaces
por: Zhang Xiao, et al.
Publicado: (2021) -
Spaces of Pointwise Multipliers on Morrey Spaces and Weak Morrey Spaces
por: Eiichi Nakai, et al.
Publicado: (2021)