Surface Roughness Analysis and Prediction with an Artificial Neural Network Model for Dry Milling of Co–Cr Biomedical Alloys
The aim of this paper is to conduct an experimental study in order to obtain a roughness (Ra) prediction model for dry end-milling (with an AlTiCrSiN PVD-coated tool) of the Co–28Cr–6Mo and Co–20Cr–15W–10Ni biomedical alloys, a model that can contribute to more quickly obtaining the desired surface...
Guardado en:
Autores principales: | Manuela-Roxana Dijmărescu, Bogdan Felician Abaza, Ionelia Voiculescu, Maria-Cristina Dijmărescu, Ion Ciocan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/75d6659a8ab9473fbefcfb52e3cc35c0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Microstructure and corrosion properties of laser remelted CrFeCoNi and CrMnFeCoNi high entropy alloys coatings
por: Caimei Wang, et al.
Publicado: (2021) -
KINETIC AND EQUILIBRIUM STUDIES OF CR(III) AND CR(VI) SORPTION FROM AQUEOUS SOLUTION USING ROSA GRUSS AN TEPLITZ (RED ROSE) WASTE BIOMASS
por: SHAFQAT,FAIZA, et al.
Publicado: (2008) -
Prediction for Dilution Rate of AlCoCrFeNi Coatings by Laser Cladding Based on a BP Neural Network
por: Yutao Li, et al.
Publicado: (2021) -
A New proof of the CR Pohožaev Identity and related Topics
por: Gamara,Najoua, et al.
Publicado: (2012) -
A novel visible light-driven TiO2 photocatalytic reduction for hexavalent chromium wastewater and mechanism
por: Baoxiu Zhao, et al.
Publicado: (2021)