Surface Roughness Analysis and Prediction with an Artificial Neural Network Model for Dry Milling of Co–Cr Biomedical Alloys
The aim of this paper is to conduct an experimental study in order to obtain a roughness (Ra) prediction model for dry end-milling (with an AlTiCrSiN PVD-coated tool) of the Co–28Cr–6Mo and Co–20Cr–15W–10Ni biomedical alloys, a model that can contribute to more quickly obtaining the desired surface...
Enregistré dans:
Auteurs principaux: | Manuela-Roxana Dijmărescu, Bogdan Felician Abaza, Ionelia Voiculescu, Maria-Cristina Dijmărescu, Ion Ciocan |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/75d6659a8ab9473fbefcfb52e3cc35c0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Microstructure and corrosion properties of laser remelted CrFeCoNi and CrMnFeCoNi high entropy alloys coatings
par: Caimei Wang, et autres
Publié: (2021) -
KINETIC AND EQUILIBRIUM STUDIES OF CR(III) AND CR(VI) SORPTION FROM AQUEOUS SOLUTION USING ROSA GRUSS AN TEPLITZ (RED ROSE) WASTE BIOMASS
par: SHAFQAT,FAIZA, et autres
Publié: (2008) -
Prediction for Dilution Rate of AlCoCrFeNi Coatings by Laser Cladding Based on a BP Neural Network
par: Yutao Li, et autres
Publié: (2021) -
A New proof of the CR Pohožaev Identity and related Topics
par: Gamara,Najoua, et autres
Publié: (2012) -
A novel visible light-driven TiO2 photocatalytic reduction for hexavalent chromium wastewater and mechanism
par: Baoxiu Zhao, et autres
Publié: (2021)