Rashba Effect on Buckled Square Lattice Ge and Sn chalcogenides (MX, M=Ge,Sn, X=O,S,Se,Te) using DFT method

The Rashba splitting are found in the buckled square lattice. Here, by applying fully relativistic density-functional theory (DFT) calculation, we confirm the existence of the Rashba splitting in the conduction band minimum of various two-dimensional MX monochalcogenides (M = Ge, Sn and X = S, Se, T...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Ibnu Jihad, Juhri Hendrawan, Adam Sukma Putra, Kuwat Triyana, Moh. Adhib Ulil Absor
Format: article
Langue:EN
Publié: Department of Chemistry, Universitas Gadjah Mada 2020
Sujets:
Accès en ligne:https://doaj.org/article/75f8937a6d304a7da0f7675a325dd8e9
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:The Rashba splitting are found in the buckled square lattice. Here, by applying fully relativistic density-functional theory (DFT) calculation, we confirm the existence of the Rashba splitting in the conduction band minimum of various two-dimensional MX monochalcogenides (M = Ge, Sn and X = S, Se, Te) exhibiting a pair inplane Rashba rotation of the spin textures. A strong correlation has also been found between the size of the Rashba parameter and the atomic number of chalcogen atom for Γ and M point in the first Brillouin zone. Our investigation clarifies that the buckled square lattice are promising for inducing the substantial Rashba splitting suggesting that the present system is promising for spintronics device.