Optimal State Transfer and Entanglement Generation in Power-Law Interacting Systems
We present an optimal protocol for encoding an unknown qubit state into a multiqubit Greenberger-Horne-Zeilinger-like state and, consequently, transferring quantum information in large systems exhibiting power-law (1/r^{α}) interactions. For all power-law exponents α between d and 2d+1, where d is t...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/75f9c02660024f53bd99f24e2c079476 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We present an optimal protocol for encoding an unknown qubit state into a multiqubit Greenberger-Horne-Zeilinger-like state and, consequently, transferring quantum information in large systems exhibiting power-law (1/r^{α}) interactions. For all power-law exponents α between d and 2d+1, where d is the dimension of the system, the protocol yields a polynomial speed-up for α>2d and a superpolynomial speed-up for α≤2d, compared to the state of the art. For all α>d, the protocol saturates the Lieb-Robinson bounds (up to subpolynomial corrections), thereby establishing the optimality of the protocol and the tightness of the bounds in this regime. The protocol has a wide range of applications, including in quantum sensing, quantum computing, and preparation of topologically ordered states. In addition, the protocol provides a lower bound on the gate count in digital simulations of power-law interacting systems. |
---|