PREDICTION SYSTEM OF ERYTHEMAS FOR PHOTOTYPES I AND II, USING DEEP-LEARNING

Background: The sun is a natural source of electromagnetic radiation, upon which are found the ultraviolet (UV) rays, where only the types A and B are able to irradiate over the surface of the Earth in different proportions. Although the sun helps human skin in the formation of vitamin D, the minera...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Juan Felipe PUERTA BARRERA, Dario Amaya Hurtado, Robinson JIMENEZ MORENO
Formato: article
Lenguaje:EN
Publicado: Universidad de Antioquia
Materias:
Acceso en línea:https://doaj.org/article/75fb4653977647fcb78604e4c4e49f3a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:75fb4653977647fcb78604e4c4e49f3a
record_format dspace
spelling oai:doaj.org-article:75fb4653977647fcb78604e4c4e49f3a2021-12-02T05:44:30ZPREDICTION SYSTEM OF ERYTHEMAS FOR PHOTOTYPES I AND II, USING DEEP-LEARNING0121-400410.17533/udea.vitae.v22n3a03https://doaj.org/article/75fb4653977647fcb78604e4c4e49f3ahttp://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-40042015000300003&lng=en&tlng=enhttps://doaj.org/toc/0121-4004Background: The sun is a natural source of electromagnetic radiation, upon which are found the ultraviolet (UV) rays, where only the types A and B are able to irradiate over the surface of the Earth in different proportions. Although the sun helps human skin in the formation of vitamin D, the mineralization of bones, and absorption of calcium and phosphorus in the organism, it can cause damage on the skin by prolonged exposure to UV radiation, generating adverse effects on human health like erythema formation, photo-toxicity, photo-allergy, idiopathic lesions, and photo-dermatitis, among others. This paper, shows the results of developing a prediction system of the exposure time of a person to UV rays coming from the sun, which can cause erythema on human skin, using the standards in UV index and the dose limits of radiation allowed for phototypes I and II, aiming to foresee the generation of these kind of lesions. This was made by the implementation of artificial intelligence algorithms like Deep Belief Networks and Backpropagation, based in the Deep Learning technique. These algorithms use as training parameters for the neural network, the meteorological data such as the sky clearness index, the radiation on the horizontal surface and average air temperature, supplied by the National Aeronautics and Space Administration (NASA). With the data, a neural network aiming to foresee the UV index for the following year of the data input was trained, in addition some mathematical regressions were applied allowing in this way, to obtain an approach to the behavior of the UV index along the day. Likewise, this information was used to estimate the maximum time of sun exposure, for the period of time contained between 6:00 a.m. and 6:00 p.m. This paper, also presents some conclusions based in the results found, which try to establish some important considerations in order to implement the neural networks.Juan Felipe PUERTA BARRERADario Amaya HurtadoRobinson JIMENEZ MORENOUniversidad de AntioquiaarticleErythemaphoto-typeultraviolet indexpredictionartificial intelligenceFood processing and manufactureTP368-456Pharmaceutical industryHD9665-9675ENVitae, Vol 22, Iss 3, Pp 189-196
institution DOAJ
collection DOAJ
language EN
topic Erythema
photo-type
ultraviolet index
prediction
artificial intelligence
Food processing and manufacture
TP368-456
Pharmaceutical industry
HD9665-9675
spellingShingle Erythema
photo-type
ultraviolet index
prediction
artificial intelligence
Food processing and manufacture
TP368-456
Pharmaceutical industry
HD9665-9675
Juan Felipe PUERTA BARRERA
Dario Amaya Hurtado
Robinson JIMENEZ MORENO
PREDICTION SYSTEM OF ERYTHEMAS FOR PHOTOTYPES I AND II, USING DEEP-LEARNING
description Background: The sun is a natural source of electromagnetic radiation, upon which are found the ultraviolet (UV) rays, where only the types A and B are able to irradiate over the surface of the Earth in different proportions. Although the sun helps human skin in the formation of vitamin D, the mineralization of bones, and absorption of calcium and phosphorus in the organism, it can cause damage on the skin by prolonged exposure to UV radiation, generating adverse effects on human health like erythema formation, photo-toxicity, photo-allergy, idiopathic lesions, and photo-dermatitis, among others. This paper, shows the results of developing a prediction system of the exposure time of a person to UV rays coming from the sun, which can cause erythema on human skin, using the standards in UV index and the dose limits of radiation allowed for phototypes I and II, aiming to foresee the generation of these kind of lesions. This was made by the implementation of artificial intelligence algorithms like Deep Belief Networks and Backpropagation, based in the Deep Learning technique. These algorithms use as training parameters for the neural network, the meteorological data such as the sky clearness index, the radiation on the horizontal surface and average air temperature, supplied by the National Aeronautics and Space Administration (NASA). With the data, a neural network aiming to foresee the UV index for the following year of the data input was trained, in addition some mathematical regressions were applied allowing in this way, to obtain an approach to the behavior of the UV index along the day. Likewise, this information was used to estimate the maximum time of sun exposure, for the period of time contained between 6:00 a.m. and 6:00 p.m. This paper, also presents some conclusions based in the results found, which try to establish some important considerations in order to implement the neural networks.
format article
author Juan Felipe PUERTA BARRERA
Dario Amaya Hurtado
Robinson JIMENEZ MORENO
author_facet Juan Felipe PUERTA BARRERA
Dario Amaya Hurtado
Robinson JIMENEZ MORENO
author_sort Juan Felipe PUERTA BARRERA
title PREDICTION SYSTEM OF ERYTHEMAS FOR PHOTOTYPES I AND II, USING DEEP-LEARNING
title_short PREDICTION SYSTEM OF ERYTHEMAS FOR PHOTOTYPES I AND II, USING DEEP-LEARNING
title_full PREDICTION SYSTEM OF ERYTHEMAS FOR PHOTOTYPES I AND II, USING DEEP-LEARNING
title_fullStr PREDICTION SYSTEM OF ERYTHEMAS FOR PHOTOTYPES I AND II, USING DEEP-LEARNING
title_full_unstemmed PREDICTION SYSTEM OF ERYTHEMAS FOR PHOTOTYPES I AND II, USING DEEP-LEARNING
title_sort prediction system of erythemas for phototypes i and ii, using deep-learning
publisher Universidad de Antioquia
url https://doaj.org/article/75fb4653977647fcb78604e4c4e49f3a
work_keys_str_mv AT juanfelipepuertabarrera predictionsystemoferythemasforphototypesiandiiusingdeeplearning
AT darioamayahurtado predictionsystemoferythemasforphototypesiandiiusingdeeplearning
AT robinsonjimenezmoreno predictionsystemoferythemasforphototypesiandiiusingdeeplearning
_version_ 1718400237292224512