Automated machine learning optimizes and accelerates predictive modeling from COVID-19 high throughput datasets
Abstract COVID-19 outbreak brings intense pressure on healthcare systems, with an urgent demand for effective diagnostic, prognostic and therapeutic procedures. Here, we employed Automated Machine Learning (AutoML) to analyze three publicly available high throughput COVID-19 datasets, including prot...
Guardado en:
Autores principales: | Georgios Papoutsoglou, Makrina Karaglani, Vincenzo Lagani, Naomi Thomson, Oluf Dimitri Røe, Ioannis Tsamardinos, Ekaterini Chatzaki |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/760ad289441a49f7b30b75092e2b03be |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting Causal Relationships from Biological Data: Applying Automated Causal Discovery on Mass Cytometry Data of Human Immune Cells
por: Sofia Triantafillou, et al.
Publicado: (2017) -
<i>ENPP2</i> Methylation in Health and Cancer
por: Maria Panagopoulou, et al.
Publicado: (2021) -
INSTANCE – the Italian seismic dataset for machine learning
por: A. Michelini, et al.
Publicado: (2021) -
Novel application of automated machine learning with MALDI-TOF-MS for rapid high-throughput screening of COVID-19: a proof of concept
por: Nam K. Tran, et al.
Publicado: (2021) -
Automated genotyping of microsatellite loci from feces with high throughput sequences.
por: Isabel Salado, et al.
Publicado: (2021)