Universal activation function for machine learning
Abstract This article proposes a universal activation function (UAF) that achieves near optimal performance in quantification, classification, and reinforcement learning (RL) problems. For any given problem, the gradient descent algorithms are able to evolve the UAF to a suitable activation function...
Guardado en:
Autores principales: | Brosnan Yuen, Minh Tu Hoang, Xiaodai Dong, Tao Lu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/761a26ef959a4ff2b37e7710b3ce6b10 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An information-theoretic machine learning approach to expression QTL analysis.
por: Tao Huang, et al.
Publicado: (2013) -
Molecular function recognition by supervised projection pursuit machine learning
por: Tyler Grear, et al.
Publicado: (2021) -
Using human brain activity to guide machine learning
por: Ruth C. Fong, et al.
Publicado: (2018) -
A machine learning method for the prediction of receptor activation in the simulation of synapses.
por: Jesus Montes, et al.
Publicado: (2013) -
Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors
por: Rasool Pelalak, et al.
Publicado: (2021)