A Collaborative Demand-Controlled Operation Strategy for a Multi-Energy System
The multi-energy system is a promising energy-efficient technology to supply electric and thermal energy to end-users simultaneously, which can realize the energy cascade utilization. However, it is challenging to optimize the operation of multi-energy systems due to their inherent structural comple...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/762e7706927e47b3adaa5b78b1bbdad6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The multi-energy system is a promising energy-efficient technology to supply electric and thermal energy to end-users simultaneously, which can realize the energy cascade utilization. However, it is challenging to optimize the operation of multi-energy systems due to their inherent structural complexity, as well as the highly coupled nature of multiple energy flows and the uncertainty of renewable energy generation. This paper proposed a collaborative demand-controlled operation strategy for a multi-energy system, which consists of an upper-level model and a lower-level model. In the upper-level model, a robust linear optimization method is adopted to optimize the system operation in a day-ahead stage. In the lower-level model, a stochastic rolling optimization method is applied to achieve a dynamic adjustment to cope with the fluctuation in both renewable electricity generation and electric load. The multiple energy demand-controlled strategy is also applied in the optimal operation strategy to achieve load shifting and to create flexibility in energy demand despite the “source-load” imbalance power fluctuation. A case study is carried out and simulation results verify the effectiveness and correctness of the proposed model of the coordinated operation framework. |
---|