Ability of artificial intelligence to detect T1 esophageal squamous cell carcinoma from endoscopic videos and the effects of real-time assistance

Abstract Diagnosis using artificial intelligence (AI) with deep learning could be useful in endoscopic examinations. We investigated the ability of AI to detect superficial esophageal squamous cell carcinoma (ESCC) from esophagogastroduodenoscopy (EGD) videos. We retrospectively collected 8428 EGD i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sho Shiroma, Toshiyuki Yoshio, Yusuke Kato, Yoshimasa Horie, Ken Namikawa, Yoshitaka Tokai, Shoichi Yoshimizu, Natsuko Yoshizawa, Yusuke Horiuchi, Akiyoshi Ishiyama, Toshiaki Hirasawa, Tomohiro Tsuchida, Naoki Akazawa, Junichi Akiyama, Tomohiro Tada, Junko Fujisaki
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/76434d4207d84508aeed12b069a34a1c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:76434d4207d84508aeed12b069a34a1c
record_format dspace
spelling oai:doaj.org-article:76434d4207d84508aeed12b069a34a1c2021-12-02T14:37:15ZAbility of artificial intelligence to detect T1 esophageal squamous cell carcinoma from endoscopic videos and the effects of real-time assistance10.1038/s41598-021-87405-62045-2322https://doaj.org/article/76434d4207d84508aeed12b069a34a1c2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-87405-6https://doaj.org/toc/2045-2322Abstract Diagnosis using artificial intelligence (AI) with deep learning could be useful in endoscopic examinations. We investigated the ability of AI to detect superficial esophageal squamous cell carcinoma (ESCC) from esophagogastroduodenoscopy (EGD) videos. We retrospectively collected 8428 EGD images of esophageal cancer to develop a convolutional neural network through deep learning. We evaluated the detection accuracy of the AI diagnosing system compared with that of 18 endoscopists. We used 144 EGD videos for the two validation sets. First, we used 64 EGD observation videos of ESCCs using both white light imaging (WLI) and narrow-band imaging (NBI). We then evaluated the system using 80 EGD videos from 40 patients (20 with superficial ESCC and 20 with non-ESCC). In the first set, the AI system correctly diagnosed 100% ESCCs. In the second set, it correctly detected 85% (17/20) ESCCs. Of these, 75% (15/20) and 55% (11/22) were detected by WLI and NBI, respectively, and the positive predictive value was 36.7%. The endoscopists correctly detected 45% (25–70%) ESCCs. With AI real-time assistance, the sensitivities of the endoscopists were significantly improved without AI assistance (p < 0.05). AI can detect superficial ESCCs from EGD videos with high sensitivity and the sensitivity of the endoscopist was improved with AI real-time support.Sho ShiromaToshiyuki YoshioYusuke KatoYoshimasa HorieKen NamikawaYoshitaka TokaiShoichi YoshimizuNatsuko YoshizawaYusuke HoriuchiAkiyoshi IshiyamaToshiaki HirasawaTomohiro TsuchidaNaoki AkazawaJunichi AkiyamaTomohiro TadaJunko FujisakiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Sho Shiroma
Toshiyuki Yoshio
Yusuke Kato
Yoshimasa Horie
Ken Namikawa
Yoshitaka Tokai
Shoichi Yoshimizu
Natsuko Yoshizawa
Yusuke Horiuchi
Akiyoshi Ishiyama
Toshiaki Hirasawa
Tomohiro Tsuchida
Naoki Akazawa
Junichi Akiyama
Tomohiro Tada
Junko Fujisaki
Ability of artificial intelligence to detect T1 esophageal squamous cell carcinoma from endoscopic videos and the effects of real-time assistance
description Abstract Diagnosis using artificial intelligence (AI) with deep learning could be useful in endoscopic examinations. We investigated the ability of AI to detect superficial esophageal squamous cell carcinoma (ESCC) from esophagogastroduodenoscopy (EGD) videos. We retrospectively collected 8428 EGD images of esophageal cancer to develop a convolutional neural network through deep learning. We evaluated the detection accuracy of the AI diagnosing system compared with that of 18 endoscopists. We used 144 EGD videos for the two validation sets. First, we used 64 EGD observation videos of ESCCs using both white light imaging (WLI) and narrow-band imaging (NBI). We then evaluated the system using 80 EGD videos from 40 patients (20 with superficial ESCC and 20 with non-ESCC). In the first set, the AI system correctly diagnosed 100% ESCCs. In the second set, it correctly detected 85% (17/20) ESCCs. Of these, 75% (15/20) and 55% (11/22) were detected by WLI and NBI, respectively, and the positive predictive value was 36.7%. The endoscopists correctly detected 45% (25–70%) ESCCs. With AI real-time assistance, the sensitivities of the endoscopists were significantly improved without AI assistance (p < 0.05). AI can detect superficial ESCCs from EGD videos with high sensitivity and the sensitivity of the endoscopist was improved with AI real-time support.
format article
author Sho Shiroma
Toshiyuki Yoshio
Yusuke Kato
Yoshimasa Horie
Ken Namikawa
Yoshitaka Tokai
Shoichi Yoshimizu
Natsuko Yoshizawa
Yusuke Horiuchi
Akiyoshi Ishiyama
Toshiaki Hirasawa
Tomohiro Tsuchida
Naoki Akazawa
Junichi Akiyama
Tomohiro Tada
Junko Fujisaki
author_facet Sho Shiroma
Toshiyuki Yoshio
Yusuke Kato
Yoshimasa Horie
Ken Namikawa
Yoshitaka Tokai
Shoichi Yoshimizu
Natsuko Yoshizawa
Yusuke Horiuchi
Akiyoshi Ishiyama
Toshiaki Hirasawa
Tomohiro Tsuchida
Naoki Akazawa
Junichi Akiyama
Tomohiro Tada
Junko Fujisaki
author_sort Sho Shiroma
title Ability of artificial intelligence to detect T1 esophageal squamous cell carcinoma from endoscopic videos and the effects of real-time assistance
title_short Ability of artificial intelligence to detect T1 esophageal squamous cell carcinoma from endoscopic videos and the effects of real-time assistance
title_full Ability of artificial intelligence to detect T1 esophageal squamous cell carcinoma from endoscopic videos and the effects of real-time assistance
title_fullStr Ability of artificial intelligence to detect T1 esophageal squamous cell carcinoma from endoscopic videos and the effects of real-time assistance
title_full_unstemmed Ability of artificial intelligence to detect T1 esophageal squamous cell carcinoma from endoscopic videos and the effects of real-time assistance
title_sort ability of artificial intelligence to detect t1 esophageal squamous cell carcinoma from endoscopic videos and the effects of real-time assistance
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/76434d4207d84508aeed12b069a34a1c
work_keys_str_mv AT shoshiroma abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
AT toshiyukiyoshio abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
AT yusukekato abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
AT yoshimasahorie abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
AT kennamikawa abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
AT yoshitakatokai abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
AT shoichiyoshimizu abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
AT natsukoyoshizawa abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
AT yusukehoriuchi abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
AT akiyoshiishiyama abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
AT toshiakihirasawa abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
AT tomohirotsuchida abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
AT naokiakazawa abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
AT junichiakiyama abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
AT tomohirotada abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
AT junkofujisaki abilityofartificialintelligencetodetectt1esophagealsquamouscellcarcinomafromendoscopicvideosandtheeffectsofrealtimeassistance
_version_ 1718391013977882624