Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons

Little is known about the brain’s computations that enable the recognition of faces. Here, the authors use unsupervised deep learning to show that the brain disentangles faces into semantically meaningful factors, like age or the presence of a smile, at the single neuron level.

Guardado en:
Detalles Bibliográficos
Autores principales: Irina Higgins, Le Chang, Victoria Langston, Demis Hassabis, Christopher Summerfield, Doris Tsao, Matthew Botvinick
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/7644350a1e17449c9aab6e68c258b6f9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Little is known about the brain’s computations that enable the recognition of faces. Here, the authors use unsupervised deep learning to show that the brain disentangles faces into semantically meaningful factors, like age or the presence of a smile, at the single neuron level.