Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
Little is known about the brain’s computations that enable the recognition of faces. Here, the authors use unsupervised deep learning to show that the brain disentangles faces into semantically meaningful factors, like age or the presence of a smile, at the single neuron level.
Enregistré dans:
Auteurs principaux: | Irina Higgins, Le Chang, Victoria Langston, Demis Hassabis, Christopher Summerfield, Doris Tsao, Matthew Botvinick |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7644350a1e17449c9aab6e68c258b6f9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Shape similarity, better than semantic membership, accounts for the structure of visual object representations in a population of monkey inferotemporal neurons.
par: Carlo Baldassi, et autres
Publié: (2013) -
An Exploration of Semantic Features in an Unsupervised Thematic Fit Evaluation Framework
par: Asad Sayeed, et autres
Publié: (2015) -
The representation of colored objects in macaque color patches
par: Le Chang, et autres
Publié: (2017) -
Development of the macaque face-patch system
par: Margaret S. Livingstone, et autres
Publié: (2017) -
Face selective patches in marmoset frontal cortex
par: David J. Schaeffer, et autres
Publié: (2020)