Mineralogical and chemical properties inversed from 21-lunar-day VNIS observations taken during the Chang’E-4 mission
Abstract We report on the mineralogical and chemical properties of materials investigated by the lunar rover Yutu-2, which landed on the Von Kármán crater in the pre-Nectarian South Pole–Aitken (SPA) basin. Yutu-2 carried several scientific payloads, including the Visible and Near-infrared Imaging S...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/764b80dea6eb4be99be0154cafbbc0fd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:764b80dea6eb4be99be0154cafbbc0fd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:764b80dea6eb4be99be0154cafbbc0fd2021-12-02T16:06:44ZMineralogical and chemical properties inversed from 21-lunar-day VNIS observations taken during the Chang’E-4 mission10.1038/s41598-021-93694-82045-2322https://doaj.org/article/764b80dea6eb4be99be0154cafbbc0fd2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-93694-8https://doaj.org/toc/2045-2322Abstract We report on the mineralogical and chemical properties of materials investigated by the lunar rover Yutu-2, which landed on the Von Kármán crater in the pre-Nectarian South Pole–Aitken (SPA) basin. Yutu-2 carried several scientific payloads, including the Visible and Near-infrared Imaging Spectrometer (VNIS), which is used for mineral identification, offering insights into lunar evolution. We used 86 valid VNIS data for 21 lunar days, with mineral abundance obtained using the Hapke radiative transfer model and sparse unmixing algorithm and chemical compositions empirically estimated. The mineralogical properties of the materials at the Chang’E-4 (CE-4) site referred to as norite/gabbro, based on findings of mineral abundance, indicate that they may be SPA impact melt components excavated by a surrounding impact crater. We find that CE-4 materials are dominated by plagioclase and pyroxene and feature little olivine, with 50 of 86 observations showing higher LCP than HCP in pyroxene. In view of the effects of space weathering, olivine content may be underestimated, with FeO and TiO2 content estimated using the maturity-corrected method. Estimates of chemical content are 7.42–18.82 wt% FeO and 1.48–2.1 wt% TiO2, with a low-medium Mg number (Mg # ~ 55). Olivine-rich materials are not present at the CE-4 landing site, based on the low-medium Mg #. Multi-origin materials at the CE-4 landing site were analyzed with regard to concentrations of FeO and TiO2 content, supporting our conclusion that the materials at CE-4 do not have a single source but rather are likely a mixture of SPA impact melt components excavated by surrounding impact crater and volcanic product ejecta.Qinghong ZengShengbo ChenYuanzhi ZhangYongling MuRui DaiCongyu YangAnzhen LiPeng LuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Qinghong Zeng Shengbo Chen Yuanzhi Zhang Yongling Mu Rui Dai Congyu Yang Anzhen Li Peng Lu Mineralogical and chemical properties inversed from 21-lunar-day VNIS observations taken during the Chang’E-4 mission |
description |
Abstract We report on the mineralogical and chemical properties of materials investigated by the lunar rover Yutu-2, which landed on the Von Kármán crater in the pre-Nectarian South Pole–Aitken (SPA) basin. Yutu-2 carried several scientific payloads, including the Visible and Near-infrared Imaging Spectrometer (VNIS), which is used for mineral identification, offering insights into lunar evolution. We used 86 valid VNIS data for 21 lunar days, with mineral abundance obtained using the Hapke radiative transfer model and sparse unmixing algorithm and chemical compositions empirically estimated. The mineralogical properties of the materials at the Chang’E-4 (CE-4) site referred to as norite/gabbro, based on findings of mineral abundance, indicate that they may be SPA impact melt components excavated by a surrounding impact crater. We find that CE-4 materials are dominated by plagioclase and pyroxene and feature little olivine, with 50 of 86 observations showing higher LCP than HCP in pyroxene. In view of the effects of space weathering, olivine content may be underestimated, with FeO and TiO2 content estimated using the maturity-corrected method. Estimates of chemical content are 7.42–18.82 wt% FeO and 1.48–2.1 wt% TiO2, with a low-medium Mg number (Mg # ~ 55). Olivine-rich materials are not present at the CE-4 landing site, based on the low-medium Mg #. Multi-origin materials at the CE-4 landing site were analyzed with regard to concentrations of FeO and TiO2 content, supporting our conclusion that the materials at CE-4 do not have a single source but rather are likely a mixture of SPA impact melt components excavated by surrounding impact crater and volcanic product ejecta. |
format |
article |
author |
Qinghong Zeng Shengbo Chen Yuanzhi Zhang Yongling Mu Rui Dai Congyu Yang Anzhen Li Peng Lu |
author_facet |
Qinghong Zeng Shengbo Chen Yuanzhi Zhang Yongling Mu Rui Dai Congyu Yang Anzhen Li Peng Lu |
author_sort |
Qinghong Zeng |
title |
Mineralogical and chemical properties inversed from 21-lunar-day VNIS observations taken during the Chang’E-4 mission |
title_short |
Mineralogical and chemical properties inversed from 21-lunar-day VNIS observations taken during the Chang’E-4 mission |
title_full |
Mineralogical and chemical properties inversed from 21-lunar-day VNIS observations taken during the Chang’E-4 mission |
title_fullStr |
Mineralogical and chemical properties inversed from 21-lunar-day VNIS observations taken during the Chang’E-4 mission |
title_full_unstemmed |
Mineralogical and chemical properties inversed from 21-lunar-day VNIS observations taken during the Chang’E-4 mission |
title_sort |
mineralogical and chemical properties inversed from 21-lunar-day vnis observations taken during the chang’e-4 mission |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/764b80dea6eb4be99be0154cafbbc0fd |
work_keys_str_mv |
AT qinghongzeng mineralogicalandchemicalpropertiesinversedfrom21lunardayvnisobservationstakenduringthechange4mission AT shengbochen mineralogicalandchemicalpropertiesinversedfrom21lunardayvnisobservationstakenduringthechange4mission AT yuanzhizhang mineralogicalandchemicalpropertiesinversedfrom21lunardayvnisobservationstakenduringthechange4mission AT yonglingmu mineralogicalandchemicalpropertiesinversedfrom21lunardayvnisobservationstakenduringthechange4mission AT ruidai mineralogicalandchemicalpropertiesinversedfrom21lunardayvnisobservationstakenduringthechange4mission AT congyuyang mineralogicalandchemicalpropertiesinversedfrom21lunardayvnisobservationstakenduringthechange4mission AT anzhenli mineralogicalandchemicalpropertiesinversedfrom21lunardayvnisobservationstakenduringthechange4mission AT penglu mineralogicalandchemicalpropertiesinversedfrom21lunardayvnisobservationstakenduringthechange4mission |
_version_ |
1718384849753997312 |