Reproduction number and sensitivity analysis of cassava mosaic disease spread for policy design

We develop a mathematical model for the dynamics of Cassava Mosaic Disease (CMD), which is driven by both planting of infected cuttings and whitefly transmission. We use the model to analyze the dynamics of a CMD outbreak and to identify the most cost-effective policy for controlling it. The model u...

Full description

Saved in:
Bibliographic Details
Main Authors: Phongchai Jittamai, Natdanai Chanlawong, Wanyok Atisattapong, Wanwarat Anlamlert, Natthiya Buensanteai
Format: article
Language:EN
Published: AIMS Press 2021
Subjects:
Online Access:https://doaj.org/article/764bd0d1bb87433883b2b366979ec76b
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We develop a mathematical model for the dynamics of Cassava Mosaic Disease (CMD), which is driven by both planting of infected cuttings and whitefly transmission. We use the model to analyze the dynamics of a CMD outbreak and to identify the most cost-effective policy for controlling it. The model uses the reproduction number $ \mathscr{R}_0 $ as a threshold, calculated using the Next-Generation Method. A locally-asymptotically-stable disease-free equilibrium is established when $ \mathscr{R}_0 < 1 $, proved by the Routh-Hurwitz criterion. The globally-asymptotically-stable disease-free and endemic-equilibrium points are obtained using Lyapunov's method and LaSalle's invariance principle. Our results indicate that the disease-free equilibrium point is globally-asymptotically-stable when $ \mathscr{R}_0 \leq 1 $, while the endemic-equilibrium point is globally-asymptotically-stable when $ \mathscr{R}_0 > 1 $. Our sensitivity analysis shows that $ \mathscr{R}_0 $ is most sensitive to the density of whitefly. Numerical simulations confirmed the effectiveness of whitefly control for limiting an outbreak while minimizing costs.