Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors
High spatio-angular resolution diffusion MRI (dMRI) has been shown to provide accurate identification of complex neuronal fiber configurations, albeit, at the cost of long acquisition times. We propose a method to recover intra-voxel fiber configurations at high spatio-angular resolution relying on...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/76689daedde14e7fb688f713995abadf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:76689daedde14e7fb688f713995abadf |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:76689daedde14e7fb688f713995abadf2021-11-25T18:03:25ZFast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors10.3390/jimaging71102262313-433Xhttps://doaj.org/article/76689daedde14e7fb688f713995abadf2021-10-01T00:00:00Zhttps://www.mdpi.com/2313-433X/7/11/226https://doaj.org/toc/2313-433XHigh spatio-angular resolution diffusion MRI (dMRI) has been shown to provide accurate identification of complex neuronal fiber configurations, albeit, at the cost of long acquisition times. We propose a method to recover intra-voxel fiber configurations at high spatio-angular resolution relying on a 3D kq-space under-sampling scheme to enable accelerated acquisitions. The inverse problem for the reconstruction of the fiber orientation distribution (FOD) is regularized by a <i>structured sparsity</i> prior promoting simultaneously voxel-wise sparsity and spatial smoothness of fiber orientation. Prior knowledge of the spatial distribution of white matter, gray matter, and cerebrospinal fluid is also leveraged. A minimization problem is formulated and solved via a stochastic forward–backward algorithm. Simulations and real data analysis suggest that accurate FOD mapping can be achieved from severe kq-space under-sampling regimes potentially enabling high spatio-angular resolution dMRI in the clinical setting.Marica PesceAudrey RepettiAnna AuríaAlessandro DaducciJean-Philippe ThiranYves WiauxMDPI AGarticlediffusion MRIHARDIcompressed sensingoptimizationdata acquisitionreconstructionPhotographyTR1-1050Computer applications to medicine. Medical informaticsR858-859.7Electronic computers. Computer scienceQA75.5-76.95ENJournal of Imaging, Vol 7, Iss 226, p 226 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
diffusion MRI HARDI compressed sensing optimization data acquisition reconstruction Photography TR1-1050 Computer applications to medicine. Medical informatics R858-859.7 Electronic computers. Computer science QA75.5-76.95 |
spellingShingle |
diffusion MRI HARDI compressed sensing optimization data acquisition reconstruction Photography TR1-1050 Computer applications to medicine. Medical informatics R858-859.7 Electronic computers. Computer science QA75.5-76.95 Marica Pesce Audrey Repetti Anna Auría Alessandro Daducci Jean-Philippe Thiran Yves Wiaux Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors |
description |
High spatio-angular resolution diffusion MRI (dMRI) has been shown to provide accurate identification of complex neuronal fiber configurations, albeit, at the cost of long acquisition times. We propose a method to recover intra-voxel fiber configurations at high spatio-angular resolution relying on a 3D kq-space under-sampling scheme to enable accelerated acquisitions. The inverse problem for the reconstruction of the fiber orientation distribution (FOD) is regularized by a <i>structured sparsity</i> prior promoting simultaneously voxel-wise sparsity and spatial smoothness of fiber orientation. Prior knowledge of the spatial distribution of white matter, gray matter, and cerebrospinal fluid is also leveraged. A minimization problem is formulated and solved via a stochastic forward–backward algorithm. Simulations and real data analysis suggest that accurate FOD mapping can be achieved from severe kq-space under-sampling regimes potentially enabling high spatio-angular resolution dMRI in the clinical setting. |
format |
article |
author |
Marica Pesce Audrey Repetti Anna Auría Alessandro Daducci Jean-Philippe Thiran Yves Wiaux |
author_facet |
Marica Pesce Audrey Repetti Anna Auría Alessandro Daducci Jean-Philippe Thiran Yves Wiaux |
author_sort |
Marica Pesce |
title |
Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors |
title_short |
Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors |
title_full |
Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors |
title_fullStr |
Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors |
title_full_unstemmed |
Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors |
title_sort |
fast fiber orientation estimation in diffusion mri from kq-space sampling and anatomical priors |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/76689daedde14e7fb688f713995abadf |
work_keys_str_mv |
AT maricapesce fastfiberorientationestimationindiffusionmrifromkqspacesamplingandanatomicalpriors AT audreyrepetti fastfiberorientationestimationindiffusionmrifromkqspacesamplingandanatomicalpriors AT annaauria fastfiberorientationestimationindiffusionmrifromkqspacesamplingandanatomicalpriors AT alessandrodaducci fastfiberorientationestimationindiffusionmrifromkqspacesamplingandanatomicalpriors AT jeanphilippethiran fastfiberorientationestimationindiffusionmrifromkqspacesamplingandanatomicalpriors AT yveswiaux fastfiberorientationestimationindiffusionmrifromkqspacesamplingandanatomicalpriors |
_version_ |
1718411687246168064 |