Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors

High spatio-angular resolution diffusion MRI (dMRI) has been shown to provide accurate identification of complex neuronal fiber configurations, albeit, at the cost of long acquisition times. We propose a method to recover intra-voxel fiber configurations at high spatio-angular resolution relying on...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marica Pesce, Audrey Repetti, Anna Auría, Alessandro Daducci, Jean-Philippe Thiran, Yves Wiaux
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/76689daedde14e7fb688f713995abadf
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:76689daedde14e7fb688f713995abadf
record_format dspace
spelling oai:doaj.org-article:76689daedde14e7fb688f713995abadf2021-11-25T18:03:25ZFast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors10.3390/jimaging71102262313-433Xhttps://doaj.org/article/76689daedde14e7fb688f713995abadf2021-10-01T00:00:00Zhttps://www.mdpi.com/2313-433X/7/11/226https://doaj.org/toc/2313-433XHigh spatio-angular resolution diffusion MRI (dMRI) has been shown to provide accurate identification of complex neuronal fiber configurations, albeit, at the cost of long acquisition times. We propose a method to recover intra-voxel fiber configurations at high spatio-angular resolution relying on a 3D kq-space under-sampling scheme to enable accelerated acquisitions. The inverse problem for the reconstruction of the fiber orientation distribution (FOD) is regularized by a <i>structured sparsity</i> prior promoting simultaneously voxel-wise sparsity and spatial smoothness of fiber orientation. Prior knowledge of the spatial distribution of white matter, gray matter, and cerebrospinal fluid is also leveraged. A minimization problem is formulated and solved via a stochastic forward–backward algorithm. Simulations and real data analysis suggest that accurate FOD mapping can be achieved from severe kq-space under-sampling regimes potentially enabling high spatio-angular resolution dMRI in the clinical setting.Marica PesceAudrey RepettiAnna AuríaAlessandro DaducciJean-Philippe ThiranYves WiauxMDPI AGarticlediffusion MRIHARDIcompressed sensingoptimizationdata acquisitionreconstructionPhotographyTR1-1050Computer applications to medicine. Medical informaticsR858-859.7Electronic computers. Computer scienceQA75.5-76.95ENJournal of Imaging, Vol 7, Iss 226, p 226 (2021)
institution DOAJ
collection DOAJ
language EN
topic diffusion MRI
HARDI
compressed sensing
optimization
data acquisition
reconstruction
Photography
TR1-1050
Computer applications to medicine. Medical informatics
R858-859.7
Electronic computers. Computer science
QA75.5-76.95
spellingShingle diffusion MRI
HARDI
compressed sensing
optimization
data acquisition
reconstruction
Photography
TR1-1050
Computer applications to medicine. Medical informatics
R858-859.7
Electronic computers. Computer science
QA75.5-76.95
Marica Pesce
Audrey Repetti
Anna Auría
Alessandro Daducci
Jean-Philippe Thiran
Yves Wiaux
Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors
description High spatio-angular resolution diffusion MRI (dMRI) has been shown to provide accurate identification of complex neuronal fiber configurations, albeit, at the cost of long acquisition times. We propose a method to recover intra-voxel fiber configurations at high spatio-angular resolution relying on a 3D kq-space under-sampling scheme to enable accelerated acquisitions. The inverse problem for the reconstruction of the fiber orientation distribution (FOD) is regularized by a <i>structured sparsity</i> prior promoting simultaneously voxel-wise sparsity and spatial smoothness of fiber orientation. Prior knowledge of the spatial distribution of white matter, gray matter, and cerebrospinal fluid is also leveraged. A minimization problem is formulated and solved via a stochastic forward–backward algorithm. Simulations and real data analysis suggest that accurate FOD mapping can be achieved from severe kq-space under-sampling regimes potentially enabling high spatio-angular resolution dMRI in the clinical setting.
format article
author Marica Pesce
Audrey Repetti
Anna Auría
Alessandro Daducci
Jean-Philippe Thiran
Yves Wiaux
author_facet Marica Pesce
Audrey Repetti
Anna Auría
Alessandro Daducci
Jean-Philippe Thiran
Yves Wiaux
author_sort Marica Pesce
title Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors
title_short Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors
title_full Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors
title_fullStr Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors
title_full_unstemmed Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space Sampling and Anatomical Priors
title_sort fast fiber orientation estimation in diffusion mri from kq-space sampling and anatomical priors
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/76689daedde14e7fb688f713995abadf
work_keys_str_mv AT maricapesce fastfiberorientationestimationindiffusionmrifromkqspacesamplingandanatomicalpriors
AT audreyrepetti fastfiberorientationestimationindiffusionmrifromkqspacesamplingandanatomicalpriors
AT annaauria fastfiberorientationestimationindiffusionmrifromkqspacesamplingandanatomicalpriors
AT alessandrodaducci fastfiberorientationestimationindiffusionmrifromkqspacesamplingandanatomicalpriors
AT jeanphilippethiran fastfiberorientationestimationindiffusionmrifromkqspacesamplingandanatomicalpriors
AT yveswiaux fastfiberorientationestimationindiffusionmrifromkqspacesamplingandanatomicalpriors
_version_ 1718411687246168064